# Fourier and Hermite series estimates of regression functions

• Wlodzimier Greblicki
• Miroslaw Pawlak
Article

## Summary

In the paper we estimate a regressionm(x)=E {Y|X=x} from a sequence of independent observations (X 1,Y 1),…, (X n, Yn) of a pair (X, Y) of random variables. We examine an estimate of a type$${{\hat m\left( x \right) = \sum\limits_{j = 1}^n {Y_{j\varphi N} } \left( {x,X_j } \right)} \mathord{\left/ {\vphantom {{\hat m\left( x \right) = \sum\limits_{j = 1}^n {Y_{j\varphi N} } \left( {x,X_j } \right)} {\sum\limits_{j = 1}^n {\varphi _N } \left( {x,X_j } \right)}}} \right. \kern-\nulldelimiterspace} {\sum\limits_{j = 1}^n {\varphi _N } \left( {x,X_j } \right)}}$$, whereN depends onn andϕ N is Dirichlet kernel and the kernel associated with the hermite series. Assuming, that E|Y|<∞ and |Y|≦γ≦∞, we give condition for$$\hat m\left( x \right)$$ to converge tom(x) at almost allx, provided thatX has a density. if the regression hass derivatives, then$$\hat m\left( x \right)$$ converges tom(x) as rapidly asO(nC−(2s−1)/4s) in probability andO(n −(2s−1)/4s logn) almost completely.

## Key words and phrases

Regression function Fourier series Hermite series nonparameteric estimate

## References

1. [1]
Bluez, J. and Bosq, D. (1976). Conditions nécessaires et suffisantes de convergence pour une class d'estimateurs de la densité,C. R. Acad. Sci., Paris,282, 636–666.Google Scholar
2. [2]
Collomb, G. (1981). Estimation non paramétrique de la regression: revue bibliographique,Internat. Statist. Rev.,49, 75–93.
3. [3]
Földes, A. and Révész, R. (1974). A general method for density estimation,Studia Sci. Math. Hungar.,9, 81–92.Google Scholar
4. [4]
Glick, N. (1974). Consistency conditions for probability estimators and integrals for density estimators,Utilitas Math.,5, 61–74.
5. [5]
Greblicki, W., Krzyzak, A. and Pawlak, M. (1984). Distribution-free pointwise consistency of kernel regression estimates,Ann. Statist.,12, 1570–1575.
6. [6]
Greblicki, W. and Pawlak, M. (1984). Hermite series estimate of a probability density and its derivatives,J. Multivariate Anal.,15, 174–182.
7. [7]
Greblicki, W. and Pawlak, M. (1985). Pointwise consistency of the Hermite series density estimate,Probability and Statistics Letters, to appear.Google Scholar
8. [8]
Hoeffding, W. (1953). Probability inequalities for sums of bounded random variables,J. Amer. Statist. Ass.,58, 13–30.
9. [9]
Hunt, R. A. (1968). On the convergence of Fourier series, Orthogonal Expansion and their Continuous Analogues,Proc. Conf. Edwardsville, 1967, 235–255, Southern Illinois Univ. Press, Carbondale, Ill.Google Scholar
10. [10]
Kronmal, R. and Tarter, M. (1968). The estimation of probability densities and cumulatives by Fourier series methods,J. Amer. Statist. Ass.,63, 925–952.
11. [11]
Krzyzak, A. and Pawlak, M. (1984). Distribution-free consistency of nonparametric kernel regression estimate and classification,IEEE Trans. Inform. Theory, IT-30, 78–81.
12. [12]
Nadaraya, E. A. (1964). On estimating regression,Theory of Probability and its Applications,9, 141–142.
13. [13]
Sansone, G. (1959).Orthogonal Functions, Interscience Publishers Inc.Google Scholar
14. [14]
Schwartz, S. C. (1967). Estimation of probability density by an orthogonal series,Ann. Math. Statist.,38, 1261–1265.
15. [15]
Stone, C. J. (1980). Optimal rates of convergence for non-parametric estimators,Ann. Statist.,8, 1348–1360.
16. [16]
Szegö, G. (1959). Orthogonal Polynomials,Amer. Math. Soc. Coll. Publ. Google Scholar
17. [17]
Tapia, R. A. and Thompson, J. R. (1978).Nonparametric Probability Density Estimation, The John Hopkins University Press, Baltimore.
18. [18]
Tarter, M. and Kronmal, R. (1970). On multivariate density estimates based on orthogonal expansions,Ann. Math. Statist.,41, 718–722.
19. [19]
Wahba, G. (1975). Optimal convergence properties of varaible knot, kernel and orthogonal series methods for density estimation,Ann. Statist.,3, 15–29.
20. [20]
Walter, G. G. (1977). Properties of Hermite series estimation of probability density,Ann. Statist.,5, 1258–1264.
21. [21]
Watson, G. S. (1964). Smooth regression analysis,Sankhya, A,26, 359–372.
22. [22]
Zygmund, A. (1959).Trigonometric series II, Cambridge University Press.Google Scholar