Stratified rejection and squeeze method for generating beta random numbers

  • H. Sakasegawa
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahrens, J. H. and Dieter, U. (1974). Computer methods for sampling from gamma, beta, Poisson and binomial distributions,Computing,12, 223–246.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Atkinson, A. C. (1979). A family of switching algorithms for the computer generation of beta random variables,Biometrika,66, 141–145.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Atkinson, A. C. and Whittaker, J. (1976). A switching algorithm for the generation of beta random variables with at least one parameter less than one,J. R. Statist. Soc., A,139, 462–467.MathSciNetGoogle Scholar
  4. [4]
    Atkinson, A. C. and Whittaker, J. (1979). Algorithm AS134: The generation of beta random variables with one parameter greater than and one parameter less than 1,Appl. Statist.,28, 90–93.MATHCrossRefGoogle Scholar
  5. [5]
    Cheng, R. C. H. (1978). Generating beta variates with nonintegral shape parameters,Commun. Ass. Comput. Math.,21, 317–322.MATHGoogle Scholar
  6. [6]
    Jöhnk, M. D. (1964). Erzeugung von betaverteilten und gamma verteilten Zufallszahlen,Metrika, 8, 5–15.MATHMathSciNetGoogle Scholar
  7. [7]
    Marsaglia, G. (1977). The squeeze method for generating gamma variates,Comp. Maths. Appls.,3, 321–325.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Schmeiser, B. W. and Babu, A. J. G. (1980). Beta variate generation via exponential majorizing functions,Operat. Res.,28, 917–926.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1983

Authors and Affiliations

  • H. Sakasegawa
    • 1
  1. 1.University of TsukubaJapan

Personalised recommendations