Advertisement

Stability theorems for some characterizations of the exponential distribution

  • Donald St. P. Richards
Article

Summary

Stability theorems are derived for various characterizations of the exponential distribution. In particular, we utilize a method which, to some extent, unifies the proof of stability for a wide class of characterizations.

Keywords

Entropy Order Statistic Exponential Distribution Triangle Inequality Conditional Expectation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Azlarov, T. A. (1978). Stability of characterizing properties of the exponential distribution,Selected Transl. in Math. Statist. and Probability,14, 33–38.zbMATHGoogle Scholar
  2. [2]
    Fisz, M. (1958). Characterization of some probability distributions,Skand. Aktuarietidskr.,41, 65–70.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Galambos, J. and Kotz, S. (1978).Characterizations of Probability Distributions, Lecture Notes in Mathematics, Vol. 675, Springer-Verlag, Berlin-Heiderberg-New York.zbMATHGoogle Scholar
  4. [4]
    Hartman, P. (1973).Ordinary Differential Equations, Hartman, Baltimore.zbMATHGoogle Scholar
  5. [5]
    Kagan, A. M., Linnik, Yu. V. and Rao, C. R. (1973).Characterization Problems in Mathematical Statistics, Wiley, New York.zbMATHGoogle Scholar
  6. [6]
    Laurent, A. G. (1974). On characterization of some distributions by truncation properties,J. Amer. Statist. Ass.,69, 823–827.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Ornstein, D. (1970). Bernoulli shifts with the same entropy are isomorphic,Advances in Math.,4, 337–352.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Shimizu, R. (1980). Functional equation with an error term and the stability of some characterizations of the exponential distribution,Ann. Inst. Statist. Math.,32, A, 1–16.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Smorodinsky, M. (1971).Ergodic Theory, Entropy, Lecture Notes in Mathematics, Vol. 214, Springer-Verlag, Berlin-Heidelberg-New York.zbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1981

Authors and Affiliations

  • Donald St. P. Richards
    • 1
  1. 1.University of the West IndiesIndia

Personalised recommendations