Materials and Structures

, Volume 36, Issue 5, pp 342–352 | Cite as

Microbial impact on building materials: an overview

  • C. Gaylarde
  • M. Ribas Silva
  • Th. Warscheid
RILEM Technical Committees RILEM TC 183-MIB ‘Microbial Impacts on Building Materials—Weathering and Conservation’

Abstract

Microbial activity can have an important impact on the durability of building materials. It is important to understand this activity in order to select appropriate treatment strategies for the repair and restoration of buildings and monuments. This paper describes the microorganisms which can modify the properties of building materials such as concrete, mortars, composites, timber, gypsum, etc., as well as the mechanisms responsible for deterioration of these materials. The information provided by the members of TC 183-MIB via a questionnaire is discussed. Techniques currently utilised and areas requiring further study are identified. In addition to the references, a list of publications for further reading completes this article.

Résumé

L'impact microbien sur les matériaux de construction a une grande influence sur leur durabilité. Il faut comprendre et identifier l'origine des mécanismes délétères, de façon à obtenir la méthode la plus adaptée à la réparation des structures, des monuments, etc. Cet article décrit les microorganismes qui peuvent modifier les propriètés des matériaux de constructions tels que le béton, le mortier, les matériaux composites, le bois, le plâtre etc., ainsi que les mécanismes de détérioration des matériaux. Les informations obtenues à l'aide d'un questionnaire rempli par les membres du TC 183-MIB, sont discutés. Les techniques utilisées et les sujets nécessitant une étude plus poussée sont identifiées. Outre les références, une liste de publications complémentaire sur ce sujet, complète cet article.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Turner, J.N., ‘The Microbiology of Fabricated Materials’, (J & A Churchill, London, 1975).Google Scholar
  2. [2]
    Walters, A.H. and Elphick, JJ (eds.), ‘Biodeterioration of Materials’, (Elsevier, London, 1968).Google Scholar
  3. [3]
    Koestler, R.J. and Vedral, J., ‘Biodeterioration of cultural property: A bibliography’,Internat. Biodet. Biodeg,28 (1991) 229–340.Google Scholar
  4. [4]
    Dubosc, A. and Escadeillas, G., ‘Développement d'algues microscopiques sur les parements en béton: techniques d'études en laboratoire’, in ‘Microbial Impacts on Building Materials’, Proceedings of an International Workshop, São Paulo, July 2000 (RILEM, Paris, 2000) Published on CD.Google Scholar
  5. [5]
    Ribas Silva, M., ‘Étude de la microstructure du béton sous l'influence de variations hygrométriques importantes’, Série ouvrages d'Art AO 10 (Lab. Central des Ponts et Chaussées, Paris, 1991).Google Scholar
  6. [6]
    Berthelin, J., ‘Des bactéries pour extraire les métaux’,La Recherche, spécial,18 (188) 719–725.Google Scholar
  7. [7]
    Shirakawa, M.A.et al., ‘Essai, comparatif de la croissance de champignons sur les mortiers de revêtement industriel et conventionnel’ (‘Teste comparativo do crescimento de fungo em argamassas de revestimento industrializadas e convencionais’, only available in Portuguese), in ‘Tecnologia das Argamassas’, Proceedings of a Brazilian Simposium, Brasilia, 2001 (PECC/ANTAC, Brasilia, 2001) 461–460.Google Scholar
  8. [8]
    Krumbein, W.E., ‘Biotransformations in monuments—a sociological study’, in ‘Durability of Building Materials’, (Elsevier, Amsterdam, 1988) 359–382.Google Scholar
  9. [9]
    Gaylarde, C.C. and Morton, L.H.G., ‘Deteriogenic biofilms on buildings and their control: a review’,Biofouling 14 (1999) 59–74.Google Scholar
  10. [10]
    Krumbein, W.E., ‘Microbial interactions with mineral materials’, in ‘Biodeterioration 7’ (Elsevier Applied Science, London and New York, 1988) 70–100.Google Scholar
  11. [11]
    Orial, G. and Brunet, A., ‘Alterations des marbres de l'église de Saint Génis des Fontaines (France): cas d'une étude microbiologique’, in ‘Microbial Impacts on Building Materials’, Proceedings of an International Workshop, São Paulo, July 2000 (RILEM, Paris, 2000) Published on CD.Google Scholar
  12. [12]
    Pochon, J. and Jaton, C., ‘Les types d'altération des roches calcaires’, in ‘La maladie de la pierre’, (Monuments Historiques de France, Paris, 1975) 14–31.Google Scholar
  13. [13]
    Bock, E., ‘Corrosion biologique des biologique des pierres: forte attaque par les nitrificantes’ (‘Biologische induzierte Korrosion von Naturstein—starker Beifall mit Nitrifikantes’, also available in German,Sonderausgabe Bautenschutz—Bausanierung, 42–45) in ‘Corrosion Biologique des Pierres’, (Laboratoire Central des Ponts et Chaussées, Paris, 1990) 9–18.Google Scholar
  14. [14]
    Krumbein, W.E., ‘Croûtes biologiques: dommages, protection, réparation’ (‘Biogene Krusten: Schaden-Schutz-Sanierung’, also available in GermanSonderausgabe Bautenschutz—Bausanierung, 61–64), in ‘Corrosion Biologique des Pierres’ (Laboratoire Central des Ponts et Chaussées, Paris, 1990) 1–8.Google Scholar
  15. [15]
    Berthelin, J., ‘Microbial weathering process’, in ‘Microbial Geochemistry’ (Blackwell, Oxford, 1993) 223–262.Google Scholar
  16. [16]
    Gaylarde, C.C. and Gaylarde, P.M., ‘Biodeterioration of external painted walls and its control’, in ‘Microbial Impacts on Building Materials’, Proceedings of an International Workshop, São Paulo, July 2000 (RILEM, Paris, 2000) Published on CD.Google Scholar
  17. [17]
    Warscheid, Th., ‘Integrated concepts for protection of cultural artifacts against biodeterioration’, in ‘Of Microbes and Art, the Role of Microbial Communities in the Degradation and Protection of Cultural Heritage’, (Kluwer/Plenum, New York, 2000) 303–420.Google Scholar
  18. [18]
    Warscheid, Th., ‘Biodeterioration mechanisms of historical monuments’, in ‘Deterioration of Concrete and Natural Stone of Historical Monuments’, Proceedings of an International Seminar, Brasília, May 1997 (Departamento de Eng. Civil da Universidade de Brasília, Brasília, 1997) 12–17.Google Scholar
  19. [19]
    Müntz, A., ‘Compt. Rend. Acad. Sci. 110: 1370–2’ in ‘Principles of Soil Microbiology’, (Williams & Wilkins, Baltimore, 1932).Google Scholar
  20. [20]
    Ribas Silva, M., ‘Study of concrete deterioration through its microstructure’,Materiales de Construccion 43 (23) (1993) 15–24.Google Scholar
  21. [21]
    Griffin, P.S., Indicator, N. and Koestler, R.J., ‘The biodeterioration of stone: a review of deterioration mechanisms, conservation, case histories and treatment’,International Biodeterioration 28 (1991) 187–208.CrossRefGoogle Scholar
  22. [22]
    May, E., Lewis, F.J., Pereira, S., Tayler, S., Seaward, M.R.D. and Allsopp, D., ‘Microbial deterioration of building stone—a review’,Biodeterioration Abstraets 7/2 (1993) 109–123.Google Scholar
  23. [23]
    Bock, E. and Sand, W., ‘The microbiology of masonry biodeterioration’,Journal of Applied Bacteriology 74 (1993) 503–514.Google Scholar
  24. [24]
    Warscheid, Th., Becker, Th., Braams, J., Brüggerhoff, S.C. Krumbein, W.E. and Petersen, K., ‘Studies on the temporal development of microbial infection of different types of sedimentary rocks and its effects on the alteration of the physico-chemical properties in building materials’, in ‘Conservation of Stone and other Materials’, Proc. of an International Congress (E & FN Spon, London, 1993) 303–313.Google Scholar
  25. [25]
    Pochon, J. and Jaton, C., ‘Biological factors in the alteration of stone’, in ‘Biodeterioration of Materials’ (Elsevier, Amsterdam, 1968) 258–268.Google Scholar
  26. [26]
    Bock, E. and Krumbein, W.E., ‘Aktivitäten von Microorganismen und möglish Folgen für Gestein vo Bautensanierung: Baubstanzerhaltung in der Denkmapflege’ (‘Activity of microorganisms and possible consequences for stones used to repair and maintain buildings of cultural heritage’, only available in German) in BMFT—Statusseminar (Wuppertal, 1989) 34–37.Google Scholar
  27. [27]
    Lewis, F.J., May, E. and Bravery, A.F., ‘Metabolic activities of bacteria isolated from building stone and their relationship to stone decay’, in ‘Biodeterioration 7’ (Elsevier Applied Science, London, 1988) 107–112.Google Scholar
  28. [28]
    Warscheid, Th., ‘Research on biodeterioration of sandstones with special reference to the chemoorganotrophic bacteria’ (‘Untersuchungen zur Biodeterioration von Sandsteinen unter besonderer Beröcksichtigung der chemoorganotrophen Bakterien, only available in German), (Universität Oldenburg, Oldenburg, 1990).Google Scholar
  29. [29]
    Braams, J., ‘Ecological studies on the fungal microflora inhabiting historical sandstone monuments’, (University of Oldenburg, Oldenburg, 1992).Google Scholar
  30. [30]
    Razzaghe, M.K. and Robert, M., ‘Geochimie des éléments majeurs des micas en milieu organique: mécanismes de l'altération des silicates’,Ann. Agron. 30 (1979) 493–512.Google Scholar
  31. [31]
    Krumbein, W.E. and Petersen, K., ‘Biogenic crust damage’, (‘Biogene krusten-Schaden’, only available in German),Schutz, Sanierung, Bautenschutz + Bausanierung, occasional Publication (1987) 61–64.Google Scholar
  32. [32]
    Kumar, R. and Kumar, A., ‘Biodeterioration of stone in tropical environments—an overview’ (J. Paul Getty Trust, USA, 1999).Google Scholar
  33. [33]
    Krumbein, W.E. and Warscheid, Th., ‘Report of the working group Patina-Crusts-Surface Deposits in WTA’ (‘Bericht der Arbeitsgruppe Patina-Krusten-Auflagerungen im WTA’, only available in German), (Referat Naturwissenschaftliche Grundlagen, 1991).Google Scholar
  34. [34]
    Wittenburg, C., ‘Dry aggressive fumes, and particle deposition on different varieties of sandstone with special reference to atmospheric variations’ (‘Trockene Schadgas und Partikeldeposition auf verschiedenen Sandsteinvarietäten unter besonderer Berücksichtigung atmosphärische Einsflussgröben. Schriftenreihe Angewandte Analytik’, only available in German), (Universität Hamburg, Institut für Anorganische und Angewandte Chemie, Hamburg, 1994).Google Scholar
  35. [35]
    Kiessl, K., ‘Influence of physical construction on the formation of crusts on stone’ (‘Bauphysikalische Einflüsse bei der Krunstenbildung am Gestein’, only available in German),Bauphysik 11 (1) (1989), 44–49.Google Scholar
  36. [36]
    Urzi, C.E., Krumbein, W.E. and Warscheid, Th., ‘On the question of biogenic colour changes of Mediterranean monuments (Coating-crust-microstromatolite-patina-scialbatura-skin-rock varnish)’ in ‘Conservation of monuments in Mediterranean Basins’, Proceedings of an International Symposium (Geneva, 1992) 397–420.Google Scholar
  37. [37]
    Warscheid, Th., Oelting, M. and Krumbein, W.E., ‘Physicochemical aspects of deterioration process on rocks with special regard to organic pollution’,Int. Biodet. 28 (1991) 37–48.CrossRefGoogle Scholar
  38. [38]
    Low, G.A.et al., ‘Assessing the relationship between the dry rot fungusSerpula lachrymans and selected froms of masonry’,Internat. Biodet. Biodeg. 46 (2000) 141–150.CrossRefGoogle Scholar
  39. [39]
    Hirsch, P., Eckhardt, F.E.W. and Palmer, R.J. Jr., ‘Methods for the study of rock-inhabiting microorganisms—A mini review’.J. Microbiol. Meths. 23 (1995) 143–167.CrossRefGoogle Scholar
  40. [40]
    Rölleke, S.et al., ‘Identification of bacteria in the biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA’,Appl. Env. Microbiol. 62 (1996) 2059–2065.Google Scholar
  41. [41]
    Sainz-Jimenez, C. and Laiz, L., ‘Occurrence of halotolerant/halophilic bacterial communities in deteriorated stone monuments’,Internat. Biodet. Biodeg. 46 (2000) 319–326.CrossRefGoogle Scholar
  42. [42]
    Resende, M.A.et al., ‘Acid production by fungi isolated from historic monuments in the Brazilian State of Minas Gerais’, inLABS 2—Biodegradation and Biodeterioration in Latin America, (The British Phycological Society, London, 1996) 65–67.Google Scholar

Bibliography for further reading

  1. [43]
    Arnould, M., ‘Altération bactérienne des pierres calcaires’, in ‘Eng. Geol. Ancient Works, Monuments & Historical Sites Preservation & Protection’, Proceedings of an Internat. Symposium (Balkema, Rotterdam, 1988) 819–823.Google Scholar
  2. [44]
    Bech-Andersen, J., ‘The Dry Rot Fungus and other Fungi in Houses’ (Hussvamp Laboratoriets, Laboratories Forlag, Holte, Denmark, 1995).Google Scholar
  3. [45]
    Bell E., Dowding, P. and Cooper, T.P., ‘The effect of a biocide treatment and a silicone treatment on the weathering of limestone’,Environ. Technol. 13 (1992) 687–693.Google Scholar
  4. [46]
    Blanchette, R.A., ‘A review of microbial deterioration found in archaeological wood from different environments’,Internat. Biodet. Biodeg. 46 (2000) 189–204.CrossRefGoogle Scholar
  5. [47]
    Bravery, A.F., ‘Biodeterioration of paint—a state-of-the-art comment’, in ‘Biodeterioration 7’ (Elsevier Applied Science, Barking, 1988), 466–485.Google Scholar
  6. [48]
    Brazolin, S., Monteiro, M.B.B., Tomazello Fo, M. and Schoenlein, M., ‘Biodeterioration ofTabebuia sp wood used in water cooling tower’ in ‘Microbial Impacts on Building Materials’, Proceedings of an International Workshop, São Paulo, July 2000 (RILEM, São Paulo, July, 2000) Published on CD.Google Scholar
  7. [49]
    El-Sayed, A.H.M.M.et al., ‘Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria’,Internat. Biodet. Biodeg. 37 (1996) 69–79.MathSciNetCrossRefGoogle Scholar
  8. [50]
    Ferris, F.G.et al., ‘Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global CO2 budget’,Geomicrobiol. J. 12 (1994) 1–13.Google Scholar
  9. [51]
    Garcia Valles, M., Vendrell Saz, M., Krumbein, W.E. and Urzi, C., ‘Coloured mineral coatings on monument surfaces as a result of biomineralization: The case of the Tarragona cathedral (Catalonia)’Appl. Geochem. 12 (1997) 255–266.CrossRefGoogle Scholar
  10. [52]
    Garcia-Valles, M.et al., ‘Biological weathering and mineral deposits of the Belevi marble quarry (Ephesus, Turkey)’,Internat. Biodet. Biodeg. 46 (2000) 221–227.CrossRefGoogle Scholar
  11. [53]
    Gaylarde, C.C., ‘Biodeterioration of monuments’ in ‘Microbiología Ambiental’, Proc. of an International Congress, Santafé de Bogota (1999) 169–171.Google Scholar
  12. [54]
    Gaylarde, P.M. and Gaylarde C.C., ‘A rapid method for the detection of algae and cyanobacteria on the external surfaces of buildings’, ‘LABS 3—Biodegradation and Biodeterioration in Latin America (The British Phycological Society, London, 1998) Paper 37.Google Scholar
  13. [55]
    Gaylarde, P.M. and Gaylarde C.C. ‘Algae and cyanobacteria on painted buildings in Latin America’,Internat. Biodet. Biodeg. 46 (2000) 93–97.CrossRefGoogle Scholar
  14. [56]
    Gaylarde, P.M., ‘Microbial polyols: their importance in the biodegradation and biodeterioration of stone’, in ‘4LABS—Biodeterioration and Biodegradation’, Proc of an International Symposium Buenos Aires, April 2001 (Buenos Aires, 2001) Published on CD.Google Scholar
  15. [57]
    Gaylarde, C.C. and Morton L.H.G., ‘Biodeterioration of mineral materials’, in ‘Encyclopedia of Environmental Microbiology’, (Bitton, Wiley, NY, 2002) 516–527.Google Scholar
  16. [58]
    Gehrmann, C.K.et al., ‘Sicole and calcicole lichens on Jewish tombstones interactions with the environment and biocorrosion’, in ‘Deterior. & Conserv. Stone’, (Nicolaus Copernicus Univ., Torun, 1988) 33–38.Google Scholar
  17. [59]
    Gillatt, J.W., ‘The need for antifungal and antialgal additives in high performance surface coatings’,Surface Coatings Internat. 74 (1991) 6–12.Google Scholar
  18. [60]
    Gómez-Alarcón, G., Muñoz, M.L. and Flores, M., ‘Excretion of organic acids by fungal strains isolated from decayed sandstone’,Internat. Biodet. Biodeg. 34 (1994) 169–180.CrossRefGoogle Scholar
  19. [61]
    Grant, C., ‘Fouling of terrestrial substrates by algae and implications for control—a review’,International Biodeterioration Bulletin 18 (1982) 57–65.Google Scholar
  20. [62]
    Griffin, P.S., Indictor, N. and Koestler, R.J., ‘The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories & treatment’,International Biodeterioration 28 (1991) 187–207.CrossRefGoogle Scholar
  21. [63]
    Gu, J.et al., ‘Biodeterioration of concrete by the fungusFusarium’,Internat. Biodet. Biodeg. 41 (1997) 101–109.CrossRefGoogle Scholar
  22. [64]
    Guillitte, O. and Dreesen, R., ‘Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials’,Sci. Total Environ. 167 (1995) 365–374.CrossRefGoogle Scholar
  23. [65]
    Gurtner, C.et al., ‘Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis’,Internat. Biodet. Biodeg. 46 (2000) 229–239.CrossRefGoogle Scholar
  24. [66]
    Hirsch, P., Eckhardt, F.E.W. and Palmer, R.J. Jr., ‘Fungi active in weathering of rock and stone monuments’,Can. J. Bot. 73 (1995) SUP1, S1384-S1390.Google Scholar
  25. [67]
    Holman, H.-Y.N.et al., ‘Surface-enhanced infrared absorption-reflectance (SEIRA) microspectroscopy for bacteria localization on geologic material surfaces’,J. Microbiol. Meths. 34 (1998) 59–71.CrossRefGoogle Scholar
  26. [68]
    Houghton, D.R.et al. (ed.), ‘Concrete and stone section’, in ‘Biodeterioration 7’ (Elsevier Applied Science, Barking, 1988) 78–134.Google Scholar
  27. [69]
    Houghton, D.R.et al. (ed.), ‘Timber section’ in ‘Biodeterioration 7’, (Elsevier Applied Science, Barking, 1988) 703–773.Google Scholar
  28. [70]
    Imre Friedmann, E. and Ocampo-Friedmann, R., ‘Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat’, in ‘Current Perspectives in Microbial Ecology’ (Florida State Univ., Tallahassee, 1984) 177–185.Google Scholar
  29. [71]
    Jellison, J. and Jasalavich, C., ‘A review of selected methods for the detection of degradative fungi’,Internat. Biodet. Biodeg. 46 (2000) 241–244.CrossRefGoogle Scholar
  30. [72]
    Kawai, K., ‘The mechanism of concrete deterioration caused by aerobic microorganisms’ in ‘Microbial Impacts on Building Materials’, Proceedings of an International Workshop, São Paulo, July, 2000 (RILEM, Paria, 2000) Published on CD.Google Scholar
  31. [73]
    Kervran, L., ‘Altération métamorphiques de certaines roches. Application à des minéraux alumino-siliceux notamment’, in ‘Détérioration des pierres en œuvre’, Proceedings of an International Colloque (Centre de Recherche et des Études Océanographiques, La Rochelle, 1972) 171–176.Google Scholar
  32. [74]
    Kuroczkin, J.et al., ‘Some physiological characteristics of fungi isolated from sandstones’, in ‘Deterior. & Conserv. Stone’, Proceedings of an Internat. Congr (Nicolaus Copernicus Univ., Torun, 1988) 21–25.Google Scholar
  33. [75]
    Lewis, F.J., May, E. and Bravery, A.F., ‘Isolation and enumeration of autotrophic and heterotrophic bacteria from decayed stone’ in ‘Deterioration and Conservation of Stone’, Proceedings of an International Congress, Lausanne, 1985 (Presses Polytechniques Romandes, Lausanne, 1985), 633–641.Google Scholar
  34. [76]
    Lewis, F.J., May, E., Daley, B. and Bravery A.F., ‘The role of heterotrophic bacteria in the decay of sandstone from ancient monuments’, in ‘Biodeterioration of Constructional Materials’, (The Netherlands. Lancashire Polytechnic, Delft, 1988) 45–53.Google Scholar
  35. [77]
    Lewis, F.J., May, E., Daley, B. and Bravery A.F., ‘Metabolic activities of bacteria isolated from building stone and their relationship to stone decay’, in ‘Biodeterioration 7’ (Elsevier, New York, 1988) 107–112.Google Scholar
  36. [78]
    Lewis, F.J., May, E. and Greenwood, R.G., ‘A laboratory method for assessing the potential of bacteria to cause decay of building stone’ in ‘Deterioration and Conservation of Stone Supplement’, Proceedings of an International Congress, Poland, 1988 (Nicholas Copernicus University, Torun, 1988) 48–58.Google Scholar
  37. [79]
    Leyval, C. and Berthelin, J., ‘Weathering of a mice by root rhizospheric microorganisms of pine’,Soil Sci. Soc. Am. 55 (1991) 1009–1016.CrossRefGoogle Scholar
  38. [80]
    Leznicka, S.et al., ‘Studies on the growth of selected fungal strains on limestones impregnated with silicone resins’,Internat. Biodet. Biodeg. 28 (1991) 91–111.Google Scholar
  39. [81]
    McCormack, K.et al., ‘A preliminary assessment of concrete biodeterioration by microorganisms’, in ‘LABS 2—Biodegradation and Biodeterioration in Latin America’, (The British Phycological Society, UK, 1996) 68–70.Google Scholar
  40. [82]
    May, E.et al., ‘Microbial deterioration of building stone—a review’,Biodet. Abstr. 7 (1994) 109–123.Google Scholar
  41. [83]
    May, E., Papida, S., Abdulle, H., Tayler, A. and Dewedar, A., ‘Comparative studies of bacterial populations on stone in temperate and semi-arid climates’ in ‘Of Microbes and Art, the Role of Microbial Communities in the Degradation and Protection of Cultural Heritage’, (Kluwer/Plenum, New York, 2000)Google Scholar
  42. [84]
    Morton, L.H.G. (ed.), ‘Biodéterioration of Constructional Materials’, (The Biodeterioration Society, Kew, 1987).Google Scholar
  43. [85]
    Mustin, C.et al., ‘Quantification of the intergranular porosity formed in bioleaching of pyrite byThiobacillus ferrooxidans’,Biotechnol. Bioeng. 39 (1992) 1121–1127.CrossRefGoogle Scholar
  44. [86]
    Nica, D.et al., ‘Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers’,Internat. Biodet. Biodeg.,46 (2000) 61–68.CrossRefGoogle Scholar
  45. [87]
    Oelting, M.et al., ‘Extraction and identification of organic compounds from the surface of weathered stones’, in ‘Deterior. & Conserv. Stone’ Proceedings of an Internat. Congr. (Nicolaus Copernicus Univ., Torun, 1988) 13–20.Google Scholar
  46. [88]
    Ohshima, A.et al., ‘A study on growth of fungus and algae on mortar’,Trans. Japan Concrete Inst. 21 173–178.Google Scholar
  47. [88a]
    Orial, C. and Marie-Victoire, E., ‘Techniques analytiques utilisées dans la recherche des mécanismes d'altération biologique de la pierre’, in ‘Deterior. Concrete and Nat. Stone of Hist. Monum’, Proceedings of an Internat. Seminar, Brasília, May 1997 (Depto. de Engenharia Civil, Univ. Brasilia, Brasília, 1997) 59–76.Google Scholar
  48. [89]
    Ortega-Calvo, J.J., Hernandez-Marine, M. and Sainz-Mimenez, C., ‘Mechanical deterioration of building stones by cyanobacteria and algae’, in ‘Biodeterioration & Biodegradation 8’, (Elsevier Scientific, New York, 1991) 392–394.Google Scholar
  49. [90]
    Palmer, R., ‘Microbial damage to building stone: analysis and intervention. Stone Cleaning and the Nature, Soiling and Decay Mechanisms of Stone’, in Proc. of an Internat. Conf., Edinburgh 1992 (RGM Webster, Donhead, 1992) 239–245.Google Scholar
  50. [91]
    Papida, S., Murphy, W. and May, E. ‘Enhancement of physical weathering of building stones by microbial populations. International’,Biodeterioration & Biodegradation Journal 46 (4) (2000) 305–317.CrossRefGoogle Scholar
  51. [92]
    Papida, S., Murphy, W. and May, E., ‘The use of sound velocity determination for the non-destructive estimation of physical and microbial weathering of limestones and dolomites’, in ‘Deterioration and Conservation of Stone’, Proceedings of an International Congress (Elsevier, Amsterdam, 2000).Google Scholar
  52. [93]
    Pasanen, A.-L.et al., ‘Fungal growth and survival in building materials under fluctuating moisture and temperature conditions’,Internat. Biodet. Biodeg. 46 (2000) 117–127.CrossRefGoogle Scholar
  53. [94]
    Price, D.L. and Ahearney, D.G., ‘Sanitation of wallboard colonised withStachybotrys chartarum’,Curr. Microbiol. 39 (1999) 21–26.CrossRefGoogle Scholar
  54. [95]
    Ribas Silvat M. and Deloye, F.-X., ‘Dégradation microbienne du béton’ in ‘La Détérioration des Matériaux de Construction’, Proc. on an International Colloque, La Rochelle, 1991, (Univ. Poitiers, La Rochelle, 1991) 337–345.Google Scholar
  55. [96]
    Ribas Silva, M., ‘Ação de microrganismos sobre o concreto protendido de pilares’, in ‘Engenharia Estrutural’, Proc. of an International Journey, Porto Alegre, 1991 (Univ. Fed. do Rio Grande do Sul, Porto Alegre, 1991) V361-V372.Google Scholar
  56. [97]
    Ribas Silva, M. and Deloye F.-X., ‘Dégradation biologique des bétons’,Bull. de Liaison des Labs. des Ponts et Chaussées 176 (1991) 87–91.Google Scholar
  57. [98]
    Ribas Silva, M., ‘Concrete deterioration by microorganisms' action’, in ‘Microscopy Applied to Building Materials’, Proc. of an International Seminar, Barcelona, Sept. 1992 (Univ. Politec. de Catalunya, Barcelona, 1972).Google Scholar
  58. [99]
    Ribas Silva, M., ‘L'identification de la cause de la dégradation du béton, premier pas pour une récupération correcte’ (‘Conhecimento da causa da degradação do concreto, primeiro passo para a correta recuperação’, only available in Portuguese), in 34th REIBRAC, Proc. of a National Congress, Curitiba, June 1992 (IBRACON, São Paulo, 1992) 435–445.Google Scholar
  59. [100]
    Ribas Silva, M., ‘La présence des microorganismes dans le béton’, in ‘Congrès Mondial du Bâtiment-CIB'93’, Proc. of an International Congress, Montréal, May 1993 (Centre Scientifique de Recherches, Montréal, 1993) 59–62.Google Scholar
  60. [101]
    Ribas Silva, M., ‘The influence of the proximity of the sea on the degradation of concrete by microorganisms’, in ‘Structural Faults and Repair-93’, Proc. of an Internat. Conf. and Exhibition, Edinburgh, 1993 (Univ. Edinburgh, Edinburgh, 1993) v.2. 21–29.Google Scholar
  61. [102]
    Ribas Silva, M., ‘La diversification climatique et la dégradation du béton’, in ‘Dealing with Defects in Building’, Proceedings of an International Symposium, Varenna, Sept. 1994 (Sartori, Internat. Council for Building Research Studies & Documentation, Varenna, 1994) v.1. 471–480.Google Scholar
  62. [103]
    Ribas Silva, M., ‘Study of biological degradation applied to concrete’, ‘Structural Mechanics in Reactor Technology’ Proc. of an International Conference, Porto Alegre, August 1995 (Univ. Fed. do Rio Grande do Sul, Porto Alegre, 1995) v. IV. 327–332.Google Scholar
  63. [104]
    Ribas Silva, M., ‘The microscopic study of concrete submitted to cold and humid climate’ in ‘Microscopy Applied to Building Materials’, Proc. of an International Seminar, Leuven, Sept. 1995 (Centre Scient. et Techn. de la Construction, Brussels, 1995) 162–169.Google Scholar
  64. [105]
    Ribas Silva, M., ‘Biological deterioration of concrete observed in Brazilian structures’,Internat. J. Restor. Build. Monum 1 (2) (1995) 153–157.Google Scholar
  65. [106]
    Ribas Silva, M. and Garcia L.A.M., ‘Climates and biodeterioration of concrete’, in ‘Durability of Building Materials and Components’, Proceedings of an International Conference, Stockholm, May 1996 (E&FN Spon, London, 1996) 191–200.Google Scholar
  66. [107]
    Ribas Silva, M., ‘Étude de la dégradation du béton à la proximité de la sortie de l'eau pluviale’ (‘Estudo da degradação do concreto localizado próximo à saida de águas pluviais’, only available in Portuguese)Rev. Eng. Ciência e Tecnologia 1 (1998) 13–17.Google Scholar
  67. [108]
    Ribas Silva, M., ‘Microbiological identification of microorganisms responsible for degradation of concrete’, in ‘Chemistry of Cement’, Proceedings. of an Internat. Congr., (Cement & Concrete, Trondheim, 1997) v.4 4i037.Google Scholar
  68. [109]
    Ribas Silva, M. and Pinho, R.M., ‘Application of mineralogical calculation to the study of concrete deterioration by x-ray diffraction and scanning electron microscopy’ in ‘Cement Microscopy’, Proceedings of an International Conference, Guadalajara, 1998 (Internat. Cement Microscopy Association, Duncanville, 1998) 175–186.Google Scholar
  69. [110]
    Rolleke, S.,et al., ‘Molecular approaches for the assessment of microbial deterioration of objects of art’, in ‘Of Microbes & Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage’, (Kluwer Academic, Dordrecht, 2000) 39–47.Google Scholar
  70. [111]
    Sainz-Jimenez, C.et al., ‘Endolithic cyanobacteria in Maastricht linestone’,Sci. Tot. Env. 94 (1990) 209–220.CrossRefGoogle Scholar
  71. [112]
    Sainz-Jimenez, C., ‘Microbial melanins in stone monuments’,Sci. Tot. Env. 167 (1995) 273–286.CrossRefGoogle Scholar
  72. [113]
    Sand, W., ‘Microbial mechanisms of deterioration of inorganic substrates—A general mechanistic overview’,Internat. Biodet. Biodeg. 40 (1997) 183–190.CrossRefGoogle Scholar
  73. [114]
    Santos, O.M. and Neves, C.M.M., ‘Evaluation of the cellulose mortar biodeterioration used as building components’, in ‘Microbial Impacts on Building Materials’, Proc. of an Intern. Workshop, São Paulo, July 2000 (RILEM, Paris, 2000) Published on CD.Google Scholar
  74. [115]
    Seal, K.J., (ed.), ‘Biodeterioration and Biodegradation of Plastics and Polymers’, (The Biodeterioration Society, Kew, 1985).Google Scholar
  75. [116]
    Shirakawa, M.A., Sato, M.I., Sanchez, O.S., Cincotto, M.A., and Rzyski, B.M., ‘Concrete deterioration associated withThiobacillus occurrence’, in ‘Biodeterioração’, Proceedings of an International Symposium, Campos do Jordão, 1992.Google Scholar
  76. [117]
    Shirakawa, M.A., ‘Biodeterioration of mortars by fungus—development of an accelerated test for evaluation of bio-reciptivity’ (‘Biodeterioração de argamassas por fungos—desenvolvimento de teste acelerado para avaliação da bio-receptividade’, only available in Portuguese), (University of São Paulo, São Paulo, 1999).Google Scholar
  77. [118]
    Shirakawa, M.A., Cincotto, M.A. and Gambale, W., ‘Mise au point d'un essai accéléré pour l'évaluation de la résistance des mortiers de revêtement d'intérieur, à la croissance des champignons’ (‘Padronização de teste acelerado para avaliação da resistência de argamassas de revestimentos de interiores ao crescimento de fungos’, ‘Tecnologia das Argamassas’, Proc. of a Brazilian Symposium, Vitória, Sept. 1999 (PPGEC/ANTAC, Vitória, 1999) 567–578.Google Scholar
  78. [119]
    Shirakawa, M.A., John, V.M., Cincotto, M.A. and Gambale, W., ‘Concrete biodeterioration associated to diesel fuel oil contamination and selecting test attempt for repairing material’, in ‘Microbial Impact on Building Materials’, Proceedings of an Internat. Workshop, São Paulo, July 2000 (RILEM, Paris, 2000) Published on CD.Google Scholar
  79. [120]
    Shirakawa, M.A., Gaylarde, C.C., Gaylarde, P.M., John, V. and Gambale, V., ‘Fungal colonization and succession on newly painted buildings and the effect of biocide’,FEMS Microbiol. Ecol. 39 (2002) 165–173.CrossRefGoogle Scholar
  80. [121]
    Shirakawa, M.A., Selmo, S.M., Cincotto, M.A., Gaylarde, C.C., Brazolin, S. and Gambale, W. ‘Susceptibility of phosphogypsum to fungal growth and the effect of various biocides’,Int. Biodeter. Biodeg. 49 (2002) 293–298.CrossRefGoogle Scholar
  81. [122]
    Souza, A.G. and Gaylarde, C.C., ‘Biodeterioration of varnished wood and its control’, in ‘Biodeterioration and Biodegradation. Dechema Monographs No. 133’, (Dechema, Frankfurt am Main, 1996) 229–236.Google Scholar
  82. [123]
    Souza, A.G. and Gaylarde, C.C., ‘Biodeterioration of varnished wood with and without biocide: implications for standard test methods’,Internat. Biodet. Biodeg. In press.Google Scholar
  83. [124]
    Sterflinger, K. and Krumbein, W.E., ‘Demateaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones’,Geomicrobiol. J14 (1997) 219–230.CrossRefGoogle Scholar
  84. [125]
    Sterflinger, K., ‘Fungi as geologic agents’,Geomicrobiol. J. 17 (2000) 97–124.CrossRefGoogle Scholar
  85. [126]
    Tayler, S. and May, E., ‘The seasonality of heterotrophic bacteria on sandstone from ancient monuments’,International Biodeterioration 28 (1991) 49–64.CrossRefGoogle Scholar
  86. [127]
    Tayler, S. and May, E., ‘The investigation of five biocides against bacteria isolated from stone and their effectiveness against in situ populations’,Material und Organismen 28 (1994) 265–277.Google Scholar
  87. [128]
    Tayler, S. and May, E., ‘Detection of specific bacteria on stone using an enzyme-linked immunosorbent assay’,International Biodeterioration and Biodegradation 34 (2) (1994) 155–167.CrossRefGoogle Scholar
  88. [129]
    Tayler, S. and May, E. ‘A comparison of methods for the measurement of microbial activity on stone’,Studies in Conservation 40 (1995) 163–170.CrossRefGoogle Scholar
  89. [130]
    Tayler, S. and May, E., ‘Investigations of the localisation of bacterial activity on sandstone from ancient monuments’,International Biodeterioration & Biodegradation Journal 46 (4) (2000) 327–333.CrossRefGoogle Scholar
  90. [131]
    Tobin, K.J.et al., ‘In situ imaging of microorganisms in geologic material’,J. Microbiol. Meths. 37 (1999) 201–213.CrossRefGoogle Scholar
  91. [132]
    Tomaselli, L.et al., ‘Biodiversity of photosynthetic microorganisms dwelling on stone monuments’,Internat. Biodet. Biodeg. 46 (2000) 251–258.CrossRefGoogle Scholar
  92. [133]
    Torre, A. de laet al., ‘Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments’,Biogeochem. 19 (1993) 129–147.CrossRefGoogle Scholar
  93. [134]
    Trotet, G., Dupuy, P. and Grossin, F., ‘Sur une nuisance biologique provoquée par les Cyanophycées’, in ‘Détérioration des pierres en œuvre’, Proceedings of an International Colloque, La Rochelle, 1972 (Centre de Recherche et des Études Océanographiques, La Rochelle, 1972) 167–170.Google Scholar
  94. [135]
    Urzi, C.et al., ‘Biomineralization processes on rock and monument surfaces’,Geomicrobiol. J. 16 (1999) 39–54.CrossRefGoogle Scholar
  95. [136]
    Waksman, S.A., ‘Principles of Soil Microbiology’, 2nd. Edn. (Williams & Wilkins, Baltimore, 1932).Google Scholar
  96. [137]
    Warscheid, Th.et al., ‘Physiological characterisation of chemoorganotrophic bacteria isolated from sandstones’ in ‘Deterior. & Conserv. Stone’, Proc. of an Internat. Congr., Torun, 1988 (Nicolaus Copernicus Univ., Torun, 1988) 26–32.Google Scholar
  97. [138]
    Warscheid, Th. and Braams J., ‘Biodeterioration of stone: a review’,Internat. Biodet. Biodeg. 46 (2000) 343–368.CrossRefGoogle Scholar
  98. [139]
    Welch, A.S. and Vandevivere, P., ‘Effect of microbial and other naturally occurring polymers on mineral dissolution’,Geomicrobiol. J. 12 (1994) 227–238.CrossRefGoogle Scholar
  99. [140]
    Wollenzien, U.et al., ‘On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks’,Sci. Total Env. 167 (1995) 287–294.CrossRefGoogle Scholar

Copyright information

© RILEM 2003

Authors and Affiliations

  • C. Gaylarde
    • 1
  • M. Ribas Silva
    • 2
  • Th. Warscheid
    • 3
  1. 1.Federal University of Rio Grande do SulBrazil
  2. 2.Federal University of Espírito SantoBrazil
  3. 3.LBW-BioconsultGermany

Personalised recommendations