Journal of Medical Ultrasonics

, Volume 29, Issue 4, pp 173–187 | Cite as

Sound waves and antineoplastic drugs: The possibility of an enhanced combined anticancer therapy

  • Loreto B FerilJr
  • Takashi Kondo
  • Shin-ichiro Umemura
  • Katsuro Tachibana
  • Angelo H Manalo
  • Peter Riesz
Review Article


Kremkau wrote a historical review of the use of ultrasound in cancer therapy in 1979(1) In 1990, Kondo and Kano published a Japanese review of the implications of the thermal and nonthermal effects of ultrasound in the treatment of cancer2). Again in 2000, Kondo et al reviewed the therapeutic applications of ultrasound and shock wave, emphasizing their thermal and cavitational effects3). Here we focus on the effects of ultrasound or shock waves in combination with anticancer agents, emphasizing their mechanisms of action and interaction. Most of the studies cited here reported promising results. Although the extent of the augmented combined effects in vivo is limited, synergism is the rule in vitro. In addition to the thermal effect of ultrasound, cavitational effects undoubtedly played a major role in both ultrasound and, more prominently, in shock wave therapy. Although the mechanism of the nonthermal noncavitational effects on biological processes is obscure, several factors, including temperature and the occurrence of cavitation and inertial cavitation, probably coexist and blend with these other effects. Magnification of anticancer activity results mainly from increased localization of drugs or other agents in vivo and increased intracellular permeabilisation both in vivo and in vitro. On the other hand, sublethal damage caused by ultrasound or shock waves may render cells more susceptible, to the effects of the agents, and both may act together, further amplifying these effects. We thus conclude that proper combination of an appropriate agent and ultrasound or shock wave should help improve cancer therapy by minimizing the side effects of drugs by lowering the effective dose and reducing the systemic concentration while increasing the efficiency of the therapy as a whole. Future studies should reveal specific conditions in this combined therapy that will lead to optimal outcome.


anti-cancer agent combined anticancer therapy shock wave ultrasound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Kremkau FW: Cancer therapy with ultrasound: a historical review.J Clin Ultrasound 1979;7: 287–300.PubMedCrossRefGoogle Scholar
  2. 2).
    Kondo T, Kano E: The possibility of ultrasonic cancer therapy and some of the difficulties: implications of the thermal and nonthermal effects. Jpn J Hyperthermic Oncol 1990;6: 1–18.Google Scholar
  3. 3).
    Kondo T, Umemura S, Tanabe K, et al: Novel therapeutic application of ultrasound: utilization of thermal and cavitational effects. Jpn J Hyperthermic Oncol 2000;16: 203–216.Google Scholar
  4. 4).
    National Council on Radiation and Measurements: Historical Perspectives. In: Biological Effects of Ultrasound: Mechanisms and Clinical Implications. Report No. 74. Bethesda, Md: NCRP 1983; pp. 5–6.Google Scholar
  5. 5).
    Hill CR: Cited by: Kremkau FW. Cancer therapy with ultrasound: a historical review.J Clin Ultrasound 1979;7: 287–300.CrossRefGoogle Scholar
  6. 6).
    Chen L, Rivens I, ter Haar G, et al: Histological changes in rat liver tumors treated with high-intensity focused ultrasound.Ultrasound Med Biol 1990;19: 67–74.CrossRefGoogle Scholar
  7. 7).
    Suslick KS: Sonochemistry:Science 1990;247: 1439–1445.PubMedCrossRefGoogle Scholar
  8. 8).
    Riesz P, Kondo T: Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 1992;13: 247–270.PubMedCrossRefGoogle Scholar
  9. 9).
    Nyborg WL: Mechanisms. In: Nyborg, WL and Ziskin, MC, eds. Biological Effects of Ultrasound. New York, Churchil Livingstone, 1985; pp. 23–33.Google Scholar
  10. 10).
    Saad A, Hahn G: Ultrasound enhanced drug toxicity on Chinese hamster ovary cells in vitro.Cancer Res 1989;49: 5931–5934.PubMedGoogle Scholar
  11. 11).
    Loverock P, ter Haar G, Ormerod M, et al: The effect of ultrasound on the cytotoxicity of adriamycin.Br J Radiol 1990;63: 542–546.PubMedCrossRefGoogle Scholar
  12. 12).
    Harrison G, Balcer-Kubiczek E, Gutierrez P: In vitro action of continuous-wave ultrasound combined with adriamycin, x-rays or hyperthermia.Radiat Res 1996;145: 98–101.PubMedCrossRefGoogle Scholar
  13. 13).
    Umemura S, Yumita N, Okano Y, et al: Sonodynamically-induced in vitro cell damage enhanced by adriamycin.Cancer Lett 1997;121: 195–201.PubMedCrossRefGoogle Scholar
  14. 14).
    Yumita N, Kaneuchi M, Okano Y, et al: Sonodynamically induced cell damage with 4'-O-tetrahydropyranyladriamycin, THP.Anticancer Res 1999;19: 281–284.PubMedGoogle Scholar
  15. 15).
    Tachibana K, Uchida T, Tamura K, et al: Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells.Cancer Lett 2000;147: 189–194.CrossRefGoogle Scholar
  16. 16).
    Hering ER, Shepstone BJ: Observations on the combined effect of ultrasound and certain cytoxics on the growth of the roots of Zea mays.Br J Radiol 1977;50: 32–37.PubMedCrossRefGoogle Scholar
  17. 17).
    Umemura S, Yumita N, Nishigaki R: Enhancement of ultrasonically induced cell damage by a galliumporphyrin complex, ATX-70. Jpn J Cancer Res 1993;84: 582–588.PubMedGoogle Scholar
  18. 18).
    Umemura S, Yumita N, Nishigaki R, et al: Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res 1990;81: 962–966.PubMedGoogle Scholar
  19. 19).
    Yumita N, Nishigaki R, Umemura K, et al: Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res 1989;80: 219–222.PubMedGoogle Scholar
  20. 20).
    Miyoshi N, Misik V, Riesz P: Sonodynamic toxicity of gallium-porphyrin analogue ATX-70 in human leukemia cells.Radiat Res 1997;148: 43–47.PubMedCrossRefGoogle Scholar
  21. 21).
    Uchida T, Tachibana K, Hisano S, et al: Elimination of adult T cell leukemia cells by ultrasound in the presence of porfimer sodium.Anticancer Drugs 1997;8: 329–335.PubMedCrossRefGoogle Scholar
  22. 22).
    Tachibana K, Uchida T, Hisano S, et al: Eliminating adult T-cell Leukaemia cells by ultrasound.Lancet 1997;349: 325.PubMedCrossRefGoogle Scholar
  23. 23).
    Yumita N, Umemura S, Nishigaki R: Ultrasonically induced cell damage enhanced by photofrin II: mechanism of sonodynamic activation. In Vivo 2000;14: 425–430.PubMedGoogle Scholar
  24. 24).
    Umemura S, Yumita N, Umemura K, et al: Sonodynamically induced effect of rose Bengal on isolated sarcoma 180 cells.Cancer Chemother Pharmacol 1999;43: 389–393.PubMedCrossRefGoogle Scholar
  25. 25).
    Yumita N, Umemura S, Kaneuchi M, et al: Sonodynamically-induced cell damage with fluorinated anthracycline derivative, FAD 104.Cancer Lett 1998;125: 209–214.PubMedCrossRefGoogle Scholar
  26. 26).
    Sakusabi N, Okada K, Sato K, et al: Enhanced sonodynamic antitumor effect of ultrasound in the presence of nonsteroidal anti-inflammatory drugs. Jpn J Cancer Res 1999;90: 1146–1151.Google Scholar
  27. 27).
    Ward M, Wu J, Chiu JF: Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents.J Acoust Soc Am 1999;105: 2951–2957PubMedCrossRefGoogle Scholar
  28. 28).
    Yumita N, Okumura A, Nishigaki R, et al: The combination treatment of ultrasound and antitumor drugs on Yoshida sarcoma. Jpn J Hyperthermic Oncol 1987;3: 175–182.Google Scholar
  29. 29).
    Saad A, Hahn G: Ultrasound-enhanced effects of adriamycin against murine tumors.Ultrasound Med Biol 1992;18: 715–723.PubMedCrossRefGoogle Scholar
  30. 30).
    Yang R, Reilly CR, Rescorla FJ, et al: Effects of high-intensity focused ultrasound in the treatment of experimental neuroblastoma.J Pediatr Surg 1992;27: 246–150.PubMedCrossRefGoogle Scholar
  31. 31).
    Yang R, Reilly CR, Rescorla FJ, et al: High-intensity focused ultrasound in the treatment of experimental liver cancer.Arch Surg 1991;126: 1009–1010.Google Scholar
  32. 32).
    More W, Lopez RM, Matthews DE, et al: Evaluation of high-intensity therapeutic ultrasound irradiation in the treatment of experimental hepatoma.J Pediatr Surg 1989;24: 30–33.CrossRefGoogle Scholar
  33. 33).
    Longo F, Tomashefsky P, Rivin B, et al: Interaction of ultrasonic hyperthermia with two alkylating agents in a murine bladder tumor.Cancer Res 1983;43: 3231–3235.PubMedGoogle Scholar
  34. 34).
    Senapati N, Houchens D, Ovejera A, et al: Ultrasonic hyperthermia and drugs as therapy for human tumor xenografts.Cancer Treat Rep 1982;66: 1635–1639.PubMedGoogle Scholar
  35. 35).
    Tacker J, Anderson R: Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia.J Urol 1982;127: 1211–1214.PubMedGoogle Scholar
  36. 36).
    Elkon D, Lacher DA, Rinehart L, et al: Effect of ultrasound-induced hyperthermia and cisdiamminedichloride platinum II on murine renal function.Cancer 1982;49: 25–29.PubMedCrossRefGoogle Scholar
  37. 37).
    Yumita N, Sasaki K, Umemura S, et al: Sonodynamically induced antitumor effect of galliumporphyrin complex by focused ultrasound on experimental kidney tumor.Cancer Lett 1996;112: 79–86.CrossRefGoogle Scholar
  38. 38).
    Jin Z, Miyoshi N, Ishiguro K, et al: Combination effect of photodynamic and sonodynamic therapy on experiemntal skin squamous cell carcinoma in C3H/HeN mice.J Dermatol 2000;27: 294–306.PubMedGoogle Scholar
  39. 39).
    Yumita N, Sasaki K, Umemura S, et al: Sonodynamically induced antitumor effect of galliumporphyrin complex by focused ultrasound on experimental kidney tumor:Cancer Lett 1997;112: 79–86.PubMedCrossRefGoogle Scholar
  40. 40).
    Sasaki K, Yumita N, Nishigaki R, et al: Antitumor effect sonodynamically induced by focused ultrasound in combination with Ga-porphyrin complex. Jpn J Cancer Res 1998;89: 452–456.PubMedGoogle Scholar
  41. 41).
    Yumita N, Nishigaki R, Umemura S: Sonodynamically induced antitumor effect of Photofrin II on colon 26 carcinoma.J Cancer Res Clin Oncol 2000;126: 601–606.PubMedCrossRefGoogle Scholar
  42. 42).
    Sur P, Ghosh P, Bag SP, et al: On the inhibitory activities of a new boron compound and ultrasound against the mouse ascites tumour.Chemotherapy 1999;45: 360–369.PubMedCrossRefGoogle Scholar
  43. 43).
    Kremkau FW, Kaufmann JS, Walker MM, et al: Ultrasonic enhancement of nitrogen mustard cytotoxicity in mouse leukemia.Cancer 1976;37: 1643–1647.PubMedCrossRefGoogle Scholar
  44. 44).
    Harrison G, Balcer-Kubiczek EK, Eddy HA: Potentiation of chemotherapy by low-level ultrasound.Int J Radiat Biol 1991;59: 1453–1466.PubMedCrossRefGoogle Scholar
  45. 45).
    Yumita N, Nishigaki R, Sakata I, et al: Sonodynamically induced antitumor effect of 4-formyloximethylidene-3-hydroxy-2-vinyl-deuterio-porphynyl (IX)-6,7-diaspartic acid (ATX-S10). Jpn J Cancer Res 2000;91: 255–260.PubMedGoogle Scholar
  46. 46).
    Umemura K, Yumita N, Nishigaki R, et al: Sonodynamically induced antitumor effect of pheophorbide a.Cancer Lett 1996;102: 151–157.PubMedCrossRefGoogle Scholar
  47. 47).
    Brayman AA, Coppage ML, Vaidya S, Miller MW: Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHz ultrasound.Ultrasound Med Biol 1999;25: 999–1008.PubMedCrossRefGoogle Scholar
  48. 48).
    Tachibana K, Uchida T, Ogawa K, et al: Induction of cell membrane porosity by ultrasound.Lancet 1999;353: 1409.PubMedCrossRefGoogle Scholar
  49. 49).
    Hahn GM, Braun J, Har-Kedar I: Thermochemotherapy: synergism between hyperthermia (42–43 degrees) and adriamycin (or bleomycin) in mammalian cell inactivation.Proc Natl Acad Sci USA 1975;72: 937–940.PubMedCrossRefGoogle Scholar
  50. 50).
    Kondo T, Kano E: Enhancement of hyperthermic cell killing by non-thermal effect of ultrasound.Int J Fadiat Biol 1987;51: 157–166.CrossRefGoogle Scholar
  51. 51).
    Longo FW, Longo WE, Tomashefsky P, et al: Interaction of ultrasound with neoplastic tissue. Local effect on subcutaneously implanted Furth-Columbia rat Wilm's tumor.Urology 1975;6: 631–634.PubMedCrossRefGoogle Scholar
  52. 52).
    Yumita N, Umemura S, Magario N, et al: Membrane lipid peroxidation as a mechanism of sonodynamically induced erythrocyte lysis.Int J Radiat Biol 1996;69: 397–404.PubMedCrossRefGoogle Scholar
  53. 53).
    Kondo T, Kano E: Effect of free radicals induced by ultrasonic cavitation on cell killing.Int J Radiat Biol 1988;54: 437–486.Google Scholar
  54. 54).
    Hristov PK, Petrov LA, Russanov EM: Lipid peroxidation induced by ultrasound in Ehrlich ascitis tumor cells.Cancer Lett 1997;121: 7–10.PubMedCrossRefGoogle Scholar
  55. 55).
    Kessel D, Jeffers R, Fowlkes JB, et al: Effects of sonodynamic and photodynamic treatment on cellular thiol levels.J Photochem Photobiol B: Biol 1996;32: 103–106.CrossRefGoogle Scholar
  56. 56).
    Russo A, Mitchell JB: Potentiation and protection of doxorubicin cytotoxicity by cellular glutathione modulation.Cancer Treat Rep 1985;69: 1293–1296.PubMedGoogle Scholar
  57. 57).
    Tata D, Hahn G, Dunn F: Ultrasonic absorption frequency dependence of two widely used anti-cancer drugs: doxorubicin and daunorubicin.Ultrasonics 1993;31: 447–450.PubMedCrossRefGoogle Scholar
  58. 58).
    Misik V, Riesz P: Free radical intermediates in sonodynamic therapy.Ann N Y Acad Sci 2000;899; 335–348.PubMedCrossRefGoogle Scholar
  59. 59).
    Misik V, Riesz P: Peroxyl radical formation in aqueous solutions of N,N-dimethylformamide, N-methylformamide, and dimethylsulfoxide by ultrasound: implications for sonosensitized cell killing.Free Radic Biol Med 1996;20: 129–138.PubMedCrossRefGoogle Scholar
  60. 60).
    Riesz P, Kondo T, Krishna MC: Free radical formation by ultrasound in aqueous solutions: a spin trapping study.Free Radic Res Comms 1990;10: 27–35.CrossRefGoogle Scholar
  61. 61).
    Sinha BK, Mimnaugh EG: Free radical and anticancer drug resistance: oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors.Free Radic Biol Med 1990;8: 567–581.PubMedCrossRefGoogle Scholar
  62. 62).
    Naffrechoux E, Chanoux S, Petrier C, et al: Sonochemical and photochemical oxidation of organic matter. Ultrason Sonochem 2000;7: 255–259.PubMedCrossRefGoogle Scholar
  63. 63).
    Worthington AE, Thompson J, Rauth AM, Hunt JW: Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part I: A search for free radical effects.Ultrasound Med Biol 1997;23: 1095–1105.PubMedCrossRefGoogle Scholar
  64. 64).
    Simon R, Ho SY, Lange S, et al: Applications of lipid-coated microbubble ultrasonic contrast to tumor therapy.Ultrasound Med Biol 1993;19: 123–125.PubMedCrossRefGoogle Scholar
  65. 65).
    Tata D, Biglow J, Wu J, et al: Ultrasound-enhanced hydroxyl radical production from two clinically employed anticancer drugs, adriamycin and mitomycin C.Ultrason Sonochem 1996;3: 39–45.CrossRefGoogle Scholar
  66. 66).
    Lusthof KJ, de Mol NJ, Richter W, et al: Redox cycling of potential antitumor aziridinyl quinones.Free Radic Biol Med 1992;13: 599–608.PubMedCrossRefGoogle Scholar
  67. 67).
    Misik V, Miyoshi N, Riesz P: EPR spin trapping study of the decomposition of azo compounds in aqueous solutions by ultrasound: potential for use as sonodynamic sensitizers for cell killing.Free Radic Res 1996;25: 13–22.PubMedCrossRefGoogle Scholar
  68. 68).
    Kapp DS, Hahn GM: Thermosensitization by sulfhydryl compounds of exponential growing Chinese hamster cells.Cancer Res 1979;39: 4630–4635.PubMedGoogle Scholar
  69. 69).
    Marmor JB, Kozak D, Hahn GM: Effects of systemically administered bleomycin or adriamycin with local hyperthermia on primary tumor and lung metastases. Cancer Treat Rep 1979;63: 1279–1290.PubMedGoogle Scholar
  70. 70).
    Hahn GM: Potential for therapy of drugs and hyperthermia.Cancer Res 1979;39: 2264–2268.PubMedGoogle Scholar
  71. 71).
    Barlogie B, Corry PM, Drewinko B: In vitro thermochemotherapy of human colon cancer cells with cis-dichlorodiammineplatinum (II) and mitomycin C.Cancer Res 1980;40: 1165–1168.PubMedGoogle Scholar
  72. 72).
    Braun J, Hahn GM: Enhanced cell killing by bleomycin and 43 degrees hyperthermia and the inhibition of recovery from potentially lethal damage.Cancer Res 1975;35: 2921–2927.PubMedGoogle Scholar
  73. 73).
    Umemura S, Kawabata K, Sasaki K, et al: Recent advances in sonodynamic approach to cancer therapy.Ultrason Sonochem 1996;3: S188-S1191.Google Scholar
  74. 74).
    Shen RN, Lu L, Wu B, et al: Effects of interleukin 2 treatment combined with local hyperthermia in mice inoculated with Lewis lung carcinoma cells.Cancer Res 1990;50: 5027–5030.PubMedGoogle Scholar
  75. 75).
    Cheng SQ, Zhou XD, Tang ZY, et al: Iodized oil enhances the thermal effect of high-intensity focused ultrasound on ablating experimental liver cancer.J Cancer Res Clin Oncol 1997;123: 639–644.PubMedCrossRefGoogle Scholar
  76. 76).
    Feril Jr. L, Kondo T, Zhao QL, et al: Enhancement of hyperthermia-induced apoptosis by nonthermal effects of ultrasound.Cancer Lett 2002;178: 63–70.PubMedCrossRefGoogle Scholar
  77. 77).
    Kim SH, Kim JH, Hahn EW: Selective potentiation of hyperthermic killing of hypoxic cells by 5-thio-D-glucose.Cancer Res 1978;38: 2935–2938.PubMedGoogle Scholar
  78. 78).
    Knapp W, Debatin J, Helus F, et al: Increased thermal response to ultrasound in the Walker carcinosarcoma treated with vasoactive drugs.Cancer Res 1989;49: 1768–1772.PubMedGoogle Scholar
  79. 79).
    Berthold F, Berthold R, Matter I, et al: Effect of spleen exposure to ultrasound on cellular and antibody-mediated immune reactions in man. Immunol 1982;162: 46–55.Google Scholar
  80. 80).
    Sietses C, Eijsbouts QAJ, von Blomberg BM, et al: Ultrasonic energy vs. monopolar electrosurgery in laparoscopic cholecystectomy: influence on the postoperative systemic immune response.Surg Endosc 2001;15: 69–71.PubMedCrossRefGoogle Scholar
  81. 81).
    Stewart HF, Moore Jr RM: Development of health risk evaluation data for diagnostic ultrasound: a historical perspective.J Clin Ultrasound 1984;12: 493–500.PubMedCrossRefGoogle Scholar
  82. 82).
    Child SZ, Hare JD, Carstensen EL, et al: Test for the effects of diagnostic ultrasound on the immune response of mice. Clin Immunol Immunopathol 1981;18: 299–302.PubMedCrossRefGoogle Scholar
  83. 83).
    Miller MW, Miller DL, Brayman AA: A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective.Ultrasound Med Biol 1996;22: 1131–1154.PubMedCrossRefGoogle Scholar
  84. 84).
    Worle K, Steinbach P, Hofstadter F: The combined effects of high-energy shock waves and cytostatic drugs or cytokines on human bladder cancer cells.Br J Cancer 1994;69: 58–65.PubMedGoogle Scholar
  85. 85).
    Rahman M: In vitro effects of high energy shock wave alone and combined with anticancer drugs on human bladder cancer cells.Urol Int 1994;53: 12–17.PubMedCrossRefGoogle Scholar
  86. 86).
    Wilmer A, Gambihler S, Delius M, Brendel W: In vitro cytotoxic activity of lithotripter shock waves combined with adriamycin or with cisplatin on L 1210 mouse leukemia cells.J Cancer Res Clin Oncol 1989;115: 229–234.PubMedCrossRefGoogle Scholar
  87. 87).
    Oosterhof GO, Smits GA, de Ruyter JE, et al: The in vitro effect of electromagnetically generated shock waves (Lithostar) on the Dunning R 3327 PAT-2 rat prostatic cancer cell-line: a potentiating effect on the in vitro cytotoxicity of vinblastin.Urol Res 1989;17: 13–19.PubMedCrossRefGoogle Scholar
  88. 88).
    Prat F, Sibille A, Luccioni C, et al: Increased chemocytotoxicity to colon cancer by shock wave-induced cavitation.Gastroenterology 1994;106: 937–944.PubMedGoogle Scholar
  89. 89).
    Oosterhof GO, Smits GA, de Ruyter AE, et al: In vivo effects of high energy shock waves on urological tumors: an evaluation of treatment modalities.J Urol 1990;144: 785–789.PubMedGoogle Scholar
  90. 90).
    Weiss N, Delius M, Gambihler S, et al: Effect of shock waves and cisplatin on cisplatin-sensitive and-resistant rodent tumors in vivo.Int J Cancer 1994;58: 693–699.PubMedCrossRefGoogle Scholar
  91. 91).
    Maruyama M, Asano T, Uematsu T, et al: The effect of high-energy shock wave therapy combined with cisplatin on mouse hepatoma. Jpn J Surg 1995;25: 987–988.CrossRefGoogle Scholar
  92. 92).
    Hoshi S, Orikasa S, Kuwahara M, et al: Shock wave and THP-adriamycin for treatment of rabbit's bladder cancer. Jpn J Cancer Res 1992;83: 248–250.PubMedGoogle Scholar
  93. 93).
    Kato M, Ioritani N, Suzuki T, et al: Mechanism of anti-tumor effect of combination of bleomycin and shock waves. Jpn J Cancer Res 2000;91: 1065–1072.PubMedGoogle Scholar
  94. 94).
    Oosterhof GO, Smits GA, de Ruyter AE, et al: Effects of high-energy shock waves combined with biological response modifiers in different human kidney cancer xenografts.Ultrasound Med Biol 1991;17: 391–399.PubMedCrossRefGoogle Scholar
  95. 95).
    Hoshi S, Orikasa S, Suzuki K, et al: High-energy underwater shock wave treatment for internal iliac muscle metastasis of prostatic cancer: a first clinical trial. Jpn J Cancer Res 1995;86: 424–428.PubMedGoogle Scholar
  96. 96).
    Kambe M, Ioritani N, Shirai S, et al: Enhancement of chemotherapeutic effects with focused shock waves: extracorporeal shock wave chemotherapy (ESWC).In Vivo 1996;10: 369–375.PubMedGoogle Scholar
  97. 97).
    Randazzo RF, Chaussy CG, Fuchs GJ, et al: The in vitro and in vivo effects of extracorporeal shock waves on malignant cells.Urol Res 1988;16: 419–426.PubMedCrossRefGoogle Scholar
  98. 98).
    Kambe M, Ioritani N, Kanamaru R: Enhancement of chemotherapeutic effects with focused shock waves: extracorporapeureal shock wave chemotherapy (ESWC).Hum Cell 1997;10: 87–93.PubMedGoogle Scholar
  99. 99).
    Delius M, Adams G: Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy.Cancer Res 1999;59: 5227–5232.PubMedGoogle Scholar
  100. 100).
    Suzuki K, Orikasa S, Hoshi S, et al: Shock wave therapy of the rabbit VX 2 bladder cancer-THP-ADM concentration in the tissue after combination therapy of THP-AD M and shock wave [in Japanese]. Nippon Hinyokika Gakkai Zasshi 1993;84: 1007–1012. Abstract in English.PubMedGoogle Scholar
  101. 101).
    Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H: Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity.Pharmacol Ther 1990;47: 219–231.PubMedCrossRefGoogle Scholar
  102. 102).
    Fosmire H, Hynynen K, Drach GW, et al: Feasibility and toxicity of transrectal ultrasound hyperthermia in the treatment of locally advanced adenocarcinoma of the prostate. Int J Radiat Oncol Biol Phys 1993;26: 253–259.PubMedGoogle Scholar
  103. 103).
    Gelet A, Chapelon JY, Bouvier R, et al: Treatment of prostate cancer with transrectal focused ultrasound: early clinical experience.Eur Urol 1996;29: 174–183.PubMedGoogle Scholar
  104. 104).
    Gelet A, Chapelon JY, Bouvier R, et al: Local control of prostate cancer by transrectal high intensity focussed ultrasound therapy: preliminary results.J Urol 1999;161: 156–162.PubMedCrossRefGoogle Scholar
  105. 105).
    Beerlage HP, van Leenders GJ, Oosterhof GO, et al: High-intensity focused ultrasound (HIFU) followed after one to two weeks by radical retropubic prostatectomy: results of a prospective study.Prostate 1999;39: 41–46.PubMedCrossRefGoogle Scholar
  106. 106).
    Gelet A, Chapelon JY, Bouvier R, et al: Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer.J Endourol 2000;14: 519–528.PubMedCrossRefGoogle Scholar
  107. 107).
    Hurwitz MD, Kaplan ID, Svensson GK, et al: Feasibility and patient tolerance of a novel transrectal ultrasound hyperthermia system for treatment of prostate cancer.Int J Hyperthermia 2001;17: 31–37.PubMedCrossRefGoogle Scholar
  108. 108).
    Uchida T, Sanghvi NT, Gardner TA, et al: Transcretal high-intensity focused ultrasound for treatment of patients with stage T1b-2n0m0 localized prostate cancer: a preliminary report.Urology 2002;59: 394–398.PubMedCrossRefGoogle Scholar
  109. 109).
    Beerlage HP, Thuroff S, Debruyne FM, et al: Transcrectal high-intensity ultrasound using the Ablatherm device in the treatment of localized prostate carcinoma.Urology 1999;54: 273–277.PubMedCrossRefGoogle Scholar
  110. 110).
    Madersbacher S, Kratzik C, Susani M, et al: Transcutaneous high-intensity focused ultrasound and irradiation: an organ-preserving treatment of cancer in a solitary testis.Eur Urol 1998;33: 195–201.PubMedCrossRefGoogle Scholar
  111. 111).
    Vallancien G, Harouni M, Guillonneau B, et al: Ablation of superficial bladder tumors with focused extracorporial pyrotherapy.Urology 1996;47: 204–207.PubMedCrossRefGoogle Scholar
  112. 112).
    Myerson RJ, Straube WL, Moros EG, et al: Simultaneous superficial hyperthermia and external radiotherapy: report of thermal dosimetry and tolerance to treatment.Int J Hyperthermia 1999;15: 251–266.PubMedCrossRefGoogle Scholar
  113. 113).
    Guthkelch AN, Carter LP, Cassady JR, et al: Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial.J Neurooncol 1991;10: 271–284.PubMedCrossRefGoogle Scholar
  114. 114).
    van Dam PA, Tjalma W, Weyler J, et al: Ultraradical debulking of epithelial ovarian cancer with the ultrasonic surgical aspirator: a prospective randomized trial.Am J Obstet Gynecol 1996;174: 943–950.PubMedCrossRefGoogle Scholar
  115. 115).
    Rosberger DF, Coleman DJ, Silverman R, et al: Immunomodulation in choroidal melanoma: reversal of inverted CD 4/CD 8 ratios following treatment with ultrasonic hyperthermia. Biotechnol Ther 1994;5: 59–68.PubMedGoogle Scholar
  116. 116).
    Visioli AG, Rivens IH, ter Haar GR, et al: Preliminary results of a phase I dose escalation clinical trial using focused ultrasound in the treatment of localized tumours.Eur J Ultrasound 1999;9: 11–18.PubMedCrossRefGoogle Scholar
  117. 117).
    Pilepich MV, Jones KG, Emami BN, et al: Interaction of bleomycin and hyperthermia-results of a clinical pilot study. Int J Radiat Oncol Biol Phys 1989;16: 211–213.PubMedGoogle Scholar

Copyright information

© The Japan Society of Ultrasonics in Medicine 2002

Authors and Affiliations

  • Loreto B FerilJr
    • 1
  • Takashi Kondo
    • 1
  • Shin-ichiro Umemura
    • 2
  • Katsuro Tachibana
    • 3
  • Angelo H Manalo
    • 4
  • Peter Riesz
    • 5
  1. 1.Department of Radiological Sciences Toyama Medical and Pharmaceutical UniversityToyamaJapan
  2. 2.Hitachi, Ltd Central Research LaboratoryTokyoJapan
  3. 3.First Department of Anatomy Fukuoka University School of MedicineFukuokaJapan
  4. 4.College of Medicine Mindanao State UniversityMSU-IITIligan CityPhilippines
  5. 5.Radiation Biology Branch National Cancer InstituteNIHBethesdaUSA

Personalised recommendations