Invertebrate Neuroscience

, Volume 3, Issue 2–3, pp 81–87 | Cite as

Strength of synaptic transmission at neuromuscular junction of crustaceans and insects in relation to calcium entry

  • H. L. AtwoodEmail author
  • S. Karunanithi
  • J. Georgiou
  • M. P. Charlton
Articles from the ICINN 97 Conference Synaptic Transmission and Plasticity


Crustacean and insect neuromuscular junctions typically include numerous small synapses, each of which usually contains one or more active zones, which possess voltage-sensitive calcium channels and are specialized for release of synaptic vesicles. Strength of transmission (the number of quantal units released per synapse by a nerve impulse) varies greatly among different endings of individual neurons, and from one neuron to another. Ultrastructural features of synapses account for some of the physiological differences at endings of individual neurons. The nerve terminals that release more neurotransmitter per impulse have a higher incidence of synapses with more than one active zone, and this is correlated with more calcium build-up during stimulation. However, comparison of synaptic structure in neurons with different physiological phenotypes indicates no major differences in structure that could account for their different levels of neurotransmitter release per impulse, and release per synapse differs among neurons despite similar calcium build-up in their terminals during stimulation. The evidence indicates differences in calcium sensitivity of the release process among neurons as an aspect of physiological specialization.

Key words

neuromuscular crustacean Drosophila synapse quantal release calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwood, H. L. (1965) Excitation and inhibition in crab muscle fibres.Comp. Biochem. Physiol.,16, 409–426.PubMedCrossRefGoogle Scholar
  2. Atwood, H. L. (1982) Synapses and neurotransmitters. InThe Biology of Crustacea, Vol. 3, ed. H. L. Atwood and D. C. Sandeman, pp. 105–150, New York: Academic Press.Google Scholar
  3. Atwood, H. L. and Bittner, G. D. (1971) Matching of excitatory and inhibitory inputs to crustacean muscle fibers.J. Neurophysiol.,34, 157–170.PubMedGoogle Scholar
  4. Atwood, H. L. and Tse, F. W. (1993) Physiological aspects of presynaptic inhibition.Adv. Neur. Sci.,1, 19–65.Google Scholar
  5. Atwood, H. L., Govind, C. K. and Wu, C.-F. (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles inDrosophila larvae.J. Neurobiol.,24, 1008–1024.PubMedCrossRefGoogle Scholar
  6. Bittner, G. D. (1968) Differentiation of nerve terminals in the cray-fish opener muscle and its functional significance.J. Gen. Physiol.,51, 731–758.PubMedCrossRefGoogle Scholar
  7. Bradacs, H., Cooper, R. L., Msghina, M. and Atwood, H. L. (1997) Differential physiology and morphology of phasic and tonic motor axons in a crayfish limb extensor muscle.J. Exp. Biol., 200, 677–691.PubMedGoogle Scholar
  8. Cooper, R. L., Martin, L. and Atwood, H. L. (1995) Synaptic differentiation of a single motor neuron: Conjoint definition of transmitter release, presynaptic calcium signals, and ultrastructure.J. Neurosci.,15, 4209–4222.PubMedGoogle Scholar
  9. Cooper, R. L., Harrington, C. C., Martin, G. and Atwood, H. L. (1996a) Quantal release at visualized terminals of a crayfish motor axon: intraterminal and regional differences.J. Comp. Neurol.,375, 583–600.PubMedCrossRefGoogle Scholar
  10. Cooper, R. L., Winslow, J. L., Govind, C. K. and Atwood, H. L. (1996b) Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.J. Neurophysiol.,75, 2451–2466.PubMedGoogle Scholar
  11. Davis, G. W. and Murphey, R. K. (1994) Retrograde signaling and the development of transmitter release properties in the invertabrate nervous system.J. Neurobiol.,25, 740–756.PubMedCrossRefGoogle Scholar
  12. Delaney, K. R. and Tank, D. W. (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium.J. Neurosci.,14, 5885–5902.PubMedGoogle Scholar
  13. Dreyer, F., Peper, K., Akert, K., Sandri, C. and Moor, H. (1973) Ultrastructure of the ‘active zone’ in the frog neuromuscular junction.Brain Res.,62, 373–380PubMedCrossRefGoogle Scholar
  14. Frank, E. (1973) Matching of facilitation at the neuromuscular junction of the lobster: a possible case for influence of muscle on nerve.J. Physiol.,233, 635–658.PubMedGoogle Scholar
  15. Govind, C. K. (1982) Development of nerve, muscle and synapse. InThe Biology of crustacea, Vol. 3, neurobiology: structure and function, ed. D. E. Bliss, H. L. Atwood and D. C. Sandeman, pp 185–204. New York: Academic Press.Google Scholar
  16. Govind, C. K., De Rosa, R. A. and Pearce, J. (1980) Presynaptic dense bars at neuromuscular synapses of the lobster,Homarus americanus.Cell Tissue Res.,207, 81–88.PubMedCrossRefGoogle Scholar
  17. Govind, C. K., Pearce, J., Wojtowicz, J. M. and Atwood, H. L. (1994) ‘Strong» and ‘weak’ synaptic differentiation in the cray-fish opener muscle: structural correlates.Synapse,16, 45–58PubMedCrossRefGoogle Scholar
  18. Jahromi, S. S. and Atwood, H. L. (1974) Three-dimensional ultra-structure of the crayfish neuromuscular apparatus.J. Cell Biol.,63, 599–613.PubMedCrossRefGoogle Scholar
  19. Jan, L. Y. and Jan, Y. N. (1976) Properties of the larval neuromuscular junction inDrosophila melanogaster.J. Physiol.,262, 189–214.PubMedGoogle Scholar
  20. Karunanithi, S., Georgiou, J., Charlton, M. P. and Atwood, H.L. (1997) Imaging of calcium inDrosophila larval motor nerve terminals.J. Neurophysiol. (in press).Google Scholar
  21. Kennedy, K. M. (1996) Monte Carlo model of Ca2+ diffusion and transmitter release in a crayfish nerve terminal. M.Sc. Thesis, University of Toronto.Google Scholar
  22. King, M. J. R., Atwood, H. L. and Govind, C. K. (1996) Structural features of crayfish phasic and tonic neuromuscular junctions.J. Comp. Neurol.,372, 618–626.PubMedCrossRefGoogle Scholar
  23. Kurdyak, P., Atwood, H. L., Stewart, B. A. and Wu, C.-F. (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscles in larvalDrosophila.J. Comp. Neurol.,350, 463–472.PubMedCrossRefGoogle Scholar
  24. Llinas, R., Sugimori, M. and Silver, R. B. (1992) Microdomains of high calcium concentration in a presynaptic terminal.Science,256, 677–679.PubMedGoogle Scholar
  25. Msghina, M., Govind, C. K. and Atwood, H. L. (1998) Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons.J. Neurosci.,18, 1374–1382.PubMedGoogle Scholar
  26. Nudell, B. M. and Grinnell, A. D. (1983) Regulation of synaptic position, size and strength in anuran skeletal muscle.J. Neurosci.,3, 161–176.PubMedGoogle Scholar
  27. Pearce, J., Govind, C. and Shivers, R. R. (1986) Intramembranous organization of lobster excitatory neuromuscular synapses.J. Neurocytol.,15, 241–252.PubMedCrossRefGoogle Scholar
  28. Propst, J. W., Herrera, A. A. and Ko, C. (1986) A comparison of active zone structure in frog neuromuscular junctions from two fast muscles with different synaptic efficacy.J. Neurocytol.,15, 525–534.PubMedCrossRefGoogle Scholar
  29. Pumplin, D. W., Reese, T. S. and Llinas, R. (1981) Are the presynaptic active zone particles the calcium channels.Proc. Natl. Acad. Sci. USA,78, 7210–7213.PubMedCrossRefGoogle Scholar
  30. Renger, J. J., Atwood, H. L. and Wu, C. F. (1997) Single-bouton recording from the larval neuromuscular junction ofDrosophila cAMP cascade mutants.38th Annual Drosophila Research Conference.Google Scholar
  31. Roberts, W. M., Jacobs, R. A. and Hudspeth, A. J. (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells.J. Neurosci.,10, 3664–3684.PubMedGoogle Scholar
  32. Schikorski, T. and Stevens, C. F. (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses.J. Neurosci.,17, 5858–5867.PubMedGoogle Scholar
  33. Stewart, B. A. (1996) Neuromuscular physiology inDrosophila: nerve terminal morphology and synaptic strength. Ph.D. Thesis, University of Toronto.Google Scholar
  34. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. and Wu, C.-F. (1994) Improved stability ofDrosophila larval neuromuscular preparations in haemolymph-like physiological solutions.J. Comp. Physiol. A,175, 179–191.PubMedCrossRefGoogle Scholar
  35. Stewart, B. A., Schuster, C. M., Goodman, C. S. and Atwood, H. L. (1996) Homeostasis of synaptic transmission inDrosophila with genetically altered nerve terminal morphology.J. Neurosci.,16, 3877–3886.PubMedGoogle Scholar
  36. Walrond, J. P. and Reese, T. S. (1985) Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers.J. Neurosci.,5, 1118–1131.PubMedGoogle Scholar
  37. Walrond, J. P., Govind, C. K. and Heustis, S. (1993) Two structural adaptations for regulating transmitter release at lobster neuromuscular synapses.J. Neurosci.,13, 4831–4845.PubMedGoogle Scholar
  38. Westrum, L. E. and Gray, E. G. (1986) New observations on the substructure of the active zone of brain synapses and motor endplates.Proc. Roy. Soc. Lond. B,229, 29–38.CrossRefGoogle Scholar
  39. Zhong, Y. and Wu, C.-F. (1991) Altered synaptic plasticity inDrosophila memory mutants with a defective cyclic AMP cascade.Science,251, 198–201.PubMedGoogle Scholar

Copyright information

© Sheffield Academic Press 1997

Authors and Affiliations

  • H. L. Atwood
    • 1
    Email author
  • S. Karunanithi
    • 1
  • J. Georgiou
    • 1
  • M. P. Charlton
    • 1
  1. 1.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations