Materials and Structures

, Volume 35, Issue 10, pp 591–602 | Cite as

Modeling of structural performances under coupled environmental and weather actions

  • K. Maekawa
  • T. Ishida


The authors propose a so-called life-span simulator that can predict concrete structural behaviors under arbitrary external forces and environmental conditions. In order to realize this kind of technology, two computational systems have been developed; one is a thermohygro system that covers microscopic phenomena in C-S-H gel and capillary pores, and the other one is a structural analysis system, which deals with macroscopic stress and deformational field. In this paper, the unification of mechanics and thermo-dynamics of materials and structures has been made with the ion transport of chloride, CO2 and O2 dissolution. This proposed integrated system can be used for simultaneous overall evaluation of structural and material performances without distinguishing between structure and durability.


Pore Water Cementitious Material Blast Furnace Slag Pore Solution Calcium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Les auteurs proposent un simulateur qui peut prévoir les comportements structuraux d'un béton (sur toute sa longuer de vie), soumis à des forces extérieures arbitraires et sous un environnement quelconque. Ce simulateur est basé sur le couplage de deux modèles analytiques: un modèle thermohydraulique qui simule les phénomènes microscopiques dans le gel C-S-H et les pores capillaires, et un modèle de structures qui intègre les contraintes macroscopiques et les déformations du béton. Dans cet article, l'association de la mécanique et thermodynamique des matériaux avec l'analyse des structures est réalisée par le transport des ions chlorhydriques, et la dissolution du CO2 et O2. Ce modèle intégré, que nous proposons, peut être utilisé simultanément pour l'évaluation complète des structures et pour l'évaluation des performances des matériaux, sans distinction entre structure et durabilité.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Maekawa, K., Chaube, R. P. and Kishi, T., ‘Modeling of Concrete Performance’, (E&FN SPON, 1999).Google Scholar
  2. [2]
    Maekawa, K., Irawan, P. and Okamura, H., ‘Path-dependent three dimensional constitutive laws of reinforced concrete— Formation and experimental verifications,Structural Engineering and Mechanics 15 (6) (1997) 743–754.Google Scholar
  3. [3]
    Okamura, H. and Maekawa, K., ‘Nonlinear Analysis and Constitutive Models of Reinforced Concrete’, (Gihodo press, Tokyo 1991).Google Scholar
  4. [4]
    Mabrouk, R., Ishida, T. and Maekawa, K., ‘A Unified Solidification Model of Hardening Concrete Composite’ Proceedings of International Workshop on Control of Cracking in Early age Concrete, Sendai, Japan, 2001.Google Scholar
  5. [5]
    Mabrouk, R., Ishida, T. and Mackawa, K., ‘A unified solidification model of hardening concrete composite at an early age’,Proc. of the JCI 22 (2) (2000) 661–666Google Scholar
  6. [6]
    Kishi, T. and Maekawa, K., ‘Multi-component model for hydration heating of Porrland cement’,Concrete Library of JSCE 28 (1996), 97–115.Google Scholar
  7. [7]
    Kishi, T. and Maekawa, K., ‘Multi-component model for hydration heating of blended cement with blast furnace slag and fly ash’,Concrete Library of JSCE 30 (1997) 125–139.Google Scholar
  8. [8]
    Chaube, R. P. and Maekawa, K., ‘A permeability model of concrete considering its microstructual characteristics’,Proc. of the JCI 18 (1) (1996) 927–932.Google Scholar
  9. [9]
    Ishida, T., Chaube, R. P., Kishi, T. and Mackawa, K., ‘Modeling of pore water content in concrete under generic dyring wetting conditions’,Concrete Library of JSCE 31 (1998) 275–287.Google Scholar
  10. [10]
    Ishida, T., ‘An integrated computational system of mass/energy generation, transport and mechanics of materials and structures’, PhD thesis submitted to University of Tokyo, (1999).Google Scholar
  11. [11]
    Ishida, T. and Maekawa, K., ‘Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory’,Concrete Library of JSCE 37 (2001) 131–146.Google Scholar
  12. [12]
    Takeda, H. and Ishida, T., ‘Chlroide binding capacity of cementitious materials based on chemical and electrical factors’,Proc. of the JCI 22 (1) (2000), 133–138.Google Scholar
  13. [13]
    Takegami, H., Ishida, T. and Maekawa, K., ‘Generalized model for chloride ion transport and equilibrium in blast furnace slag concrete’,Proc. of the JCI 24 (1) (2002) 633–638.Google Scholar
  14. [14]
    Gjørv, O. E. and Sakai, K., ‘Testing of chloride diffusivity for concrete’, Proc. of the International Conference on Concrete under Severe Conditions, CONSEC95, (1995), 645–654.Google Scholar
  15. [15]
    Papadakis, V. G., Vayenas, C. G. and Fardis, M. N., ‘Physical and chemical characteristics affecting the durability of concrete’,ACI Material Journal 88 (2) (1991) 186–196.Google Scholar
  16. [16]
    Freiser, H. and Fermando, Q., ‘Ionic Equilibria in Analytical Chemistry’, (John Wiley & Sons, Inc., 1963).Google Scholar
  17. [17]
    Saeki, T., Ohga, H. and Nagataki, S., ‘Mechanism of carbonation and prediction of carbonation process of concrete’,Concrete Library of JSCE 17 (1991) 23–36.Google Scholar
  18. [18]
    West, J. M., ‘Basic corrosion and oxidation’, Second edition (John Wiley & Sons, 1986).Google Scholar
  19. [19]
    Ishida, T. and Maekawa, K., ‘An integrated computational system for mass/energy generation, transport, and mechanics of materials and structures’,Concrete Library of JSCE 36 (2000) 129–144.Google Scholar
  20. [20]
    Maruya, T., Tangtermsirikul, S. and Matsuoka, Y., ‘Modeling of chloride ion movement in the surface layer of hardened concrete’,Concrete Library of JSCE 32 (1998) 69–84.Google Scholar
  21. [21]
    Uomoto, T. and Takada, Y., ‘Factors affecting concrete carbonation ratio’,Concrete Libary of JSCE 21 (1993) 31–44.Google Scholar
  22. [22]
    Yokozeki, K., Motohashi, K., Okada, K. and Tsutsumi, T., ‘A rational model to predict the service life of RC structures in marine environment’, Forth CANMET/ACI International Conference on Durability of Concrete, SP170-40, (1997) 777–798.Google Scholar
  23. [23]
    Shimomura, T., ‘Modelling of Initial Defect of Concrete due to Drying Shringkage’, Concrete Under Severe Conditions 2, CONSEC 98, Vol. 3 (1998) 2074–2083.Google Scholar
  24. [24]
    Nishi, T., Shimomura, T. and Sato, H., ‘Modeling of diffusion of vapor within cracked concrete’,Proceedings of the JCI 21 (2) (1999) 859–864 (In Japanese).Google Scholar
  25. [25]
    Japan Society of Civil Engineers, ‘JSCE standard construction specification’ (1999).Google Scholar
  26. [26]
    Okamura, H., Maekawa, K. and Ozawa, K., ‘High Performance Concrete’, Gihodo press, Tokyo, 1993).Google Scholar

Copyright information

© RILEM 2002

Authors and Affiliations

  • K. Maekawa
    • 1
  • T. Ishida
    • 1
  1. 1.Department of Civil EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations