# Further modified forms of binomial and poisson distributions

- 43 Downloads
- 6 Citations

## Summary

Some new type of modifications of binomial and Poisson distributions, are discussed. First, we consider Bernoulli trials of length*n* with success rate*p* up to time when*m* times of successes occur, and then, changing the success rate to γ*p*, we continue the remaining trial. The distribution of number of successes is called the modified binomial distribution. The Poisson limit (*n* tends to infinity and*p* tends to 0, keeping*np*=λ) of the modified binomial is called the modified Poisson distribution. The probability functions of modified binomial and Poisson distributions are given (Section 1).

A new concept of (*m*, γ)-modification is introduced and fundamental theorem which gives the relations between the factorial moments of any probability function and the factorial moments of its (*m*, γ)-modification, is presented. Then some lower order moments of the modified binomial and Poisson distributions are given explicitly (Section 2).

The modified Poisson of*m*=2 is fitted to the distribution of number of children for Japanese women in some age group. The fitting procedure is also presented (Section 3). Some historical sketch concerning the modification and generalization of binomial and Poisson distributions is given in Appendix.

## Keywords

Poisson Distribution Probability Function Probability Generate Function Factorial Moment Bernoulli Trial## Preview

Unable to display preview. Download preview PDF.

## References

- [1]Adelson, R. M. (1966). Compound Poisson distributions,
*Operat. Res. Quart.*,**17**, 73–75.CrossRefGoogle Scholar - [2]Birnbaum, Z. W. and Tingey, F. (1951). One-sided confidence contours for probability distribution functions,
*Ann. Math. Statist.*,**22**, 592–596.MathSciNetCrossRefGoogle Scholar - [3]Chaddha, R. L. (1956). A case of contagion in binomial distribution,
*Classical and contagious discrete distributions*Statist. Pub. Soc., Calcutta.Google Scholar - [4]Consul, P. C. (1974). A simple urn model dependent upon predetermined strategy,
*Sankhyã*,**36**, B, 391–399.MathSciNetzbMATHGoogle Scholar - [5]Consul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution,
*Technometrics*,**15**, 791–799.MathSciNetCrossRefGoogle Scholar - [6]Dandekar, V. M. (1955). Certain modified forms of binomial and Poisson distributions,
*Sankhyã*,**15**, 237–250.MathSciNetzbMATHGoogle Scholar - [7]Eggenberger, F. and Pólya, G. (1923). Über die Statistik verketteter Vorgänge.
*Zeit. angew. Math. Mech.*,**1**, 179–289.zbMATHGoogle Scholar - [8]Feller, W. (1943). On a general class of contagious distributions
*Ann. Math. Statist.*,**14**, 389–400.MathSciNetCrossRefGoogle Scholar - [9]Galliher, H. P., Morse, P. M. and Simond, M. (1959). Dynamics of two classes of continuous-review inventory systems
*Operat. Res.*,**7**, 362–384.MathSciNetCrossRefGoogle Scholar - [10]Greenwood, M. and Yule, G. U. (1920). An enquiry into the nature of frequency distributions representative of multiple happenings,
*J. R. Statist. Soc.*, A,**83**, 255–279.CrossRefGoogle Scholar - [11]Gurland, J. (1957). Some interrelations among compound and generalized distributions,
*Biometrika*,**44**, 265–268.CrossRefGoogle Scholar - [12]Inst. Population Problems (1973). Summary of the 6th fertility survey in 1972,
*Res. Series*, No. 200, 41.Google Scholar - [13]Inst. Population Problems (1978). Summary of the 7th fertility survey in 1977,
*Res. Series*, No. 219, 12.Google Scholar - [14]Jain, G. C. and Consul, P. C. (1971). A generalized negative binomial distribution,
*SIAM J. Appl. Math.*,**21**, 501–513.MathSciNetCrossRefGoogle Scholar - [15]Johnson, N. L. and Kotz, S. (1969).
*Distributions in Statistical Discrete Distribution*, John Wiley & Sons, New York.zbMATHGoogle Scholar - [16]Neyman, J. (1939). On a new class of ‘contagious’ distributions, applicable in entomology and bacteriology,
*Ann. Math. Statist.*,**10**, 35–57.CrossRefGoogle Scholar - [17]Rutherford, R. S. G. (1954). On a contagious distribution,
*Ann. Math. Statist.*,**25**, 703–713.MathSciNetCrossRefGoogle Scholar - [18]Schelling, H. (1951). Distribution of the ordinal number of simultaneous events which last during a finite time.
*Ann. Statist. Math.*,**22**, 452–455.MathSciNetCrossRefGoogle Scholar - [19]Snyder, D. L. (1975)
*Random Point Processes*, John Wiley & Sons, New York.zbMATHGoogle Scholar - [20]Suzuki, G. (1976). Modified binomial distribution model—Bernoulli trials with controllable success rate,
*Proc. Inst. Statist. Math.*,**24**, 41–46.MathSciNetzbMATHGoogle Scholar - [21]Thomas M. (1949). A generalization of Poisson's binomial limit for use in ecology,
*Biometrika*,**36**, 18–25.MathSciNetCrossRefGoogle Scholar - [22]Woodbury, M. A. (1949). On a probability distribution,
*Ann. Math. Statist.*,**20**, 311–313.CrossRefGoogle Scholar