On a generalization of Gaussian distribution

  • Tokio Taguchi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Box, G. E. P. and Tiao, G. C. (1962). A further look at robustness via Bayes's theorem,Biometrika,49, 419–432.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Diananda, P. H. (1948). Note on some properties of maximum likelihood estimates,Proc. Camb. Phil. Soc.,45, 536–544.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Erdelyi, A., Margnus, W., Oberhettinger, F. and Tricomi, F. G. (1953).Higher Transcendental Functions, vol. I, II, McGraw Hill Book Co., Inc., New York.Google Scholar
  4. [4]
    Fechner, G. T. (1878). Ueber den Ausgangswerth der kleinsten Abweichungssumme, dessen Bestimmung, Verwendung und Verallgemeinerung,Abhandlungen der Königlich Sähsischen Gesellschaft der Wissenschaften, mathematisch-physische Klasse, X.Google Scholar
  5. [5]
    Johnson, N. L. and Kotz, S. (1970).Distributions in Statistics—continuous univariate distributions—2, Houghton Mifflin Co., Boston, 33–34.Google Scholar
  6. [6]
    Johnson, N. L. and Kotz, S. (1972).Distributions in Statistics—continuous multivariate distributions, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  7. [7]
    Magnus, W. and Oberhettinger, F. (1954).Formulas and Theorems for the Functions of Mathematical Physics, translated by John Wermer, Chelsen Publishing Co., New York.Google Scholar
  8. [8]
    Mathai, A. M. and Saxena, R. K. (1966). On a generalized hypergeometric distribution,Metrika,11, 127–132.MATHMathSciNetGoogle Scholar
  9. [9]
    Miller, K. S. (1964).Multidimensional Gaussian Distributions, John Wiley & Sons, Inc., New York.MATHGoogle Scholar
  10. [10]
    Pearson, K. (1894). Contribution to the mathematical theory of evolution,Phil. Trans. Royal Soc. London, Series A,185, 71–110.MATHGoogle Scholar
  11. [11]
    Pearson, K. (1895). Contribution to the mathematical theory of evolution,Phil. Trans. Royal Soc. London, Series A,186, 343–414.Google Scholar
  12. [12]
    Rice, J. R. and White, J. S. (1964). Norms for smoothing and estimation,SIAM Review,6, 243–256.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Sarmanov, I. O. (1968). A generalized symmetric gamma correlation,Dok. Acad. Nauk SSSR,179, 1279–1283 (Soviet Math. Dokl.),9, 547-550.MATHGoogle Scholar
  14. [14]
    Sarmanov, I. O. (1970). Gamma correlation process and its properties,Dokl. Acad. Nauk SSSR,191, 30–32 (in Russian).MATHMathSciNetGoogle Scholar
  15. [15]
    Subbotin, M. T. (1923). On the law of frequency of errors,Matematicheskii Sbornik,31, 296–301.MATHGoogle Scholar
  16. [16]
    Taguchi, T. (1974). On Fechner's thesis and statistics with normp, Ann. Inst. Statist. Math.,26, 175–193.MATHMathSciNetGoogle Scholar
  17. [17]
    Taguchi, T. (1974). On the size and share distributions in economic statistics—Fundamental notions of statistics withp norm and vector valued probability, (Japanese with English Summary),Proc. Inst. Statist. Math.,22, 1–43.MATHMathSciNetGoogle Scholar
  18. [18]
    Walker, H. M. (1929).Studies in the History of Statistical Method, The William & Wilkins Co., Baltimore.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1978

Authors and Affiliations

  • Tokio Taguchi

There are no affiliations available

Personalised recommendations