Materials and Structures

, Volume 33, Issue 4, pp 243–250 | Cite as

Influence of composition and curing on drying shrinkage of aerated concrete

  • K. Ramamurthy
  • N. Narayanan
Scientific Reports


The process of drying of many materials is accompanied by dimensional changes, which induce cracks in the structure. This phenomenon is particularly significant in acrated concrete owing to its high total porosity and specific surface of pores. The factors influencing drying shrinkage of aerated concrete are widely different from that of normal concrete because of the presence of coarse aggregates in the latter. This paper discusses the results of statistically designed experiments conducted to ascertain the influence of composition on the drying shrinkage of non-autoclaved and autoclaved aerated concrete. Detailed single factor experiments were conducted to assess the influence of basic constituents of the mix on drying shrinkage whereas fractional factorial experiments were used for the interaction effects and the influence of some additives. It was observed that increase in lime-cement ratio and fly ash content increases drying shrinkage. Significant shrinkage reduction is obtained by autoclaving, suggesting that drying shrinkage is predominantly a function of the physical structure of the hydration product.


Shrinkage Silica Fume Orthogonal Array Coarse Aggregate Concrete Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Un grand nombre de matériaux subissent des modifications dans leurs dimensions lors du séchage, ce qui entraîne une fissuration dans la structure. Ce phénomène est particulièrement significatif dans le cas du béton-gaz en raison de sa porosité générale élevée et de la surface spécifique des pores. Les facteurs qui influencent le retrait de séchage du béton-gaz sont très différents de ceux du béton ordinaire en raison de la présence d’agrégats grossiers dans ce dernier. Cet article traite des résultats d’expériences statistiquement conçues pour étudier les effets de la composition sur le retrait de séchage du béton-gaz non-passé à l’autoclave. Certaines expériences avaient pour but d’étudier l’influence d’un seul facteur: les composants de base du mélange, alors que pour étudier les effets d’interaction et l’influence de certains additifs, plusieurs facteurs ont été pris en compte. On a observé que l’augmentation de la proportion chaux/ciment et de la teneur en cendres volantes fait augmenter le retrait de séchage. Une réduction significative du retrait est obtenue par l’autoclavage, ce qui implique que le retrait de séchage est essentiellement une fonction de la structure physique du produit hydratation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Valore, R. C., ‘Cellular concretes—Physical properties’,Journal of the American Concrete Institute 25 (1954) 817–836.Google Scholar
  2. [2]
    Ziembika, H., ‘Effect of micropore structure on cellular concrete shrinkage’,Cement and Concrete Research 7 (1977) 323–332.CrossRefGoogle Scholar
  3. [3]
    Neville, A. M., Properties of Concrete, (John Wiley and Sons, New York, 1981).Google Scholar
  4. [4]
    Hansen, W. and Almudaiheem, J. A., ‘Ultimate drying shrinkage of concrete—Influence of major parameters’,ACI Materials Journal 84 (1987) 217–223.Google Scholar
  5. [5]
    Schubert, P., ‘Shrinkage behaviour of aerated concrete’, in ‘Autoclaved Aerated Concrete, Moisture and Properties’, (Elsevier, 1983) 207–217.Google Scholar
  6. [6]
    Georgiades, A. and Ch. Ftikos, ‘Effect of micropore structure on autoclaved aerated concrete shrinkage’,Cement and Concrete Research 21 (1991) 655–662.CrossRefGoogle Scholar
  7. [7]
    Nielsen, A., ‘Shrinkage and Creep—Deformation parameters of acrated, autoclaved concrete’, in ‘Autoclaved Acrated Concrete, Moisture and Properties’ (Elsevier, 1983) 189–204.Google Scholar
  8. [8]
    Tada, S., ‘Pore structure and moisture characteristics of porous inorganic building materials’, in ‘Advances in Autoclaved Aerated Concrete’ (A. A. Balkema, 1992) 53–64.Google Scholar
  9. [9]
    Houst, Y., Alou, F. and Wittmann, F. H., ‘Influence of moisture content on the mechanical properties of autoclaved aerated concrete’, in ‘Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, 1983) 219–233.Google Scholar
  10. [10]
    Tada, S. and S. Nakano., ‘Microstructural approach to properties of moist cellular concrete’, in ‘Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, 1983) 71–89.Google Scholar
  11. [11]
    Alexanderson, J., ‘Relations between Structure and Mechanical properties of Autoclaved Aerated concrete’,Cement and Concrete Research 9 (1979) 507–514.CrossRefGoogle Scholar
  12. [12]
    ACI Committee 516, ‘High pressure steam curing-Modern practice and properties of autoclaved products’,Journal of the American Concrete Institute 62 (1965) 868–907.Google Scholar
  13. [13]
    RILEM recommended practice. Autoclaved aerated concrete— Properties, testing and design, (E and FN SPON, 1993).Google Scholar
  14. [14]
    Hobbs, D. W. and Mears, A. R., ‘The influence of specimen geometry upon weight change and shrinkage of air-dried mortar specimens’,Magazine of Concrete Research 23 (1971) 89–98.Google Scholar
  15. [15]
    ASTM C 596, ‘Standard test method for drying shrinkage of mortar containing portland cement’. (American Society of Testing and Materials, Philadelphia, 1989).Google Scholar
  16. [16]
    IS 6441—Part II, ‘Methods of tests for autoclaved cellular concrete —Determination of drying shrinkage’, (Bureau of Indian Standards, New Delhi, 1972).Google Scholar
  17. [17]
    Fulton, F. S., ‘A co-ordinated approach to the shrinkage testing of concretes and mortars’,Magazine of Concrete Research 13 (1961) 133–140.Google Scholar
  18. [18]
    ASTM C 618, ‘Standard specification for fly ash and raw or calcined natural pozzolan for use as a mineral admixture in portland cement concrete’, (American Society of Testing and Materials, Philadelphia, 1989).Google Scholar
  19. [19]
    Narayanan, N., ‘Influence of composition on the microstructure and properties of aerated concrete’, M.S. Thesis (IIT Madras, June 1999).Google Scholar
  20. [20]
    Lochner, R. H. and Matar, J. E., Designing for Quality, (Chapman and Hall, 1990).Google Scholar
  21. [21]
    Kjellsen, K. O. and Atlassi, E. H., ‘Pore structure of cement silica fume systems—Presence of hollow shell pores’,Cement and Concrete Research 29 (1999) 133–142.CrossRefGoogle Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • K. Ramamurthy
    • 1
  • N. Narayanan
    • 1
  1. 1.Building Technology and Construction Management Division, Department of Civil EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations