Medical and biological engineering

, Volume 13, Issue 1, pp 97–103 | Cite as

Intestinal smooth muscle electrical potentials recorded from surface electrodes

  • B. H. Brown
  • R. H. Smallwood
  • H. L. Duthie
  • C. J. Stoddard


Electrical recordings have been made from cutaneous electrodes placed on the trunk with a view to establishing the source of the slow potential changes which can be recorded. Cutaneous recordings have been made on 16 normal subjects in both the fasted and fed states, and in some cases simultaneous recordings have been made from electrodes attached to the end of a naso-gastric tube and sucked onto the stomach wall. Frequency and correlation analyses have been used to help interpret the potential changes.

A significant frequency component at approximately 3 cycles/min (average 3·02±0·21/min) was found in 88% of the stretches of record analysed. It is shown that this is the basic electrical rhythm of the stomach. In a smaller number of recordings (28%), a significant frequency component at 10–12 cycles/min was found. The source of these rhythms has not been proven, but is likely to be from either the small or large bowel.


Intestinal e.m.g. Surface electrodes 


Des mesures électriques â partir d'électrodes cutanées appliquées sur le tronc, ont été enregistrées dans le but d'établir la source des changements de potentiel lents pouvant être observés. On a fait des enregistrements cutanés sur 16 sujets normaux â jeun et après un repas, et dans certains cas, des enregistrements simultanés on été entrepris sur des électrodes reliées à l'extrèmité d'une sonde nasogastrique et aspirées contre la paroi stomacale. On a entrepris des analyses de corrélation de fréquence afin d'assister à l'interprétation des changements de potentiel.

On a trouvé une composante significàtive de la fréquence á environ 3 cycles par minute dans 88% des bandes d'enregistrement analysées. On démontre que ceci est le rythme électrique de base de l'estomac. Dans un nombre moins élevé d'enregistrements (28%) on a trouvé une composante significative de la fréquence à 10 à 12 cycles par minute. On n'a pas découvert la source de ces rythmes, mais il est possible qu'ils possible qu'ils proviennent soit du gros intestin, soit de l'intestin grêle.


Durch auf der Bauchhaut angebrachte Elektroden wurden elektrische Werte aufgezeich net, um die Ursache für die langsamen Änderungen des potentials zu finden, die sichtbar wird. An 16 normalen Personen wurden Hautaufzeichnungen nach Fasten und Nahrungsaufnahme vergonommen. In manchen Fällen wurden gleichzeitig Aufzeichnungen von Elektroden am Ende der Rachenspeiseröhre vorgenommen, die von der Magenwand angesogen wurden. Zur Interpretation der Potentialänderungen wurden Frequenz- und Korrelations-analysen verwendet.

Bei 88% der Aufzeichnungen wurden bedeutende Frequenzelemente bei ca. 3 Schwingungen/min (im Durchschnitt 3,02±0,21/min.) bei Analyse festgestellt. Es wird demonstriert, dass dieses der basische elektrische Rhythmus das Magens ist. Bei einem kleineren Teil der Aufzeichnungen (28%) wurde ein bedeutendes Frequenzelement bie 10–12 Schwingungen/min. festgestellt. Die Ursache für diese Rhythmen wurde noch nicht bewiesen. Sie liegt jedoch wahrscheinlich im Dünn- oder Dickdarm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, W. C. andMahoney, L. J. (1922) Action currents in stomach and intestine.Am. J. Physiol. 58, 476–493.Google Scholar
  2. Barr, L. (1963) Propagation in vertebrate visceral smooth muscle.J. Theor. Biol. 4, 73–85.CrossRefGoogle Scholar
  3. Barr, L., Dewey, M. M. andEvans, H. (1965) The role of the nexus in the propagation of action potentials of cardiac and smooth muscles.Fedn. Proc. 24, 142.Google Scholar
  4. Bass, P., Code, C. F. andLambert, E. H. (1961) Motor and electric activity of the duodenum.Am. J. Physiol. 201, 287–291.Google Scholar
  5. Bozler, E. (1948) Conduction automaticity and tonus of visceral muscle.Experientia. 4, 213–218.CrossRefGoogle Scholar
  6. Brown, B. H. (1969) Waveform analysis of nerve and muscle action potentials recorded from surface electrodes. Ph.D. thesis, University of Sheffield.Google Scholar
  7. Brown, B. H., Kwong, K. K., Ng., K., Duthie, H. L., Whittaker, G. E. andFranks, C. I. (1971) Computer analysis and simulation of human gastroduodenal electrical activity.Med. & Biol. Eng. 9, 305–314.CrossRefGoogle Scholar
  8. Bulbring, E. (1955) Correlation between membrane potential, spike discharge and tension in smooth muscle.J. Physiol. 128, 200–221.Google Scholar
  9. Burnstock, G. (1970) Structure of smooth muscle and its innervation. In:Smooth muscle. Edward Arnold, London.Google Scholar
  10. Christensen, J., Schedl, H. H. andClifton, J. A. (1964) The basic electrical rhythm of the duodenum in normal subjects and in patients with thyroid disease.J. Clin. Invest. 43, 1659–1667.CrossRefGoogle Scholar
  11. Couturier, P., Rose, C., Couturier-Turpin, N. H. andDebray, C. (1969) Electromyography of the colon in situ.Gastroenterology 56, 317–322.Google Scholar
  12. Daniel, E. E., Wachter, B. T., Honour, A. J. andBogoh, A. (1968) The relationship between electrical and mechanical activity of the small intestine of dog and man.Can. J. Biochem. Physiol. 38, 777.Google Scholar
  13. Duthie, H. L., Brown, B. H., Robertson-Dunn, B., Kwong, K. K., Ng., K. andWhittaker, G. E. (1972) Electrical activity in the gastroduodenal area—Slow waves in the proximal duodenum.Am. J. Dig. Diseases 17, 344–350.CrossRefGoogle Scholar
  14. Kwong, K. K. andNg., K. (1972) The electrical activity and motility of the human gastric antrum and duodenum. M.D. Thesis, University of Sheffield.Google Scholar
  15. Monges, H., Salducci, J. andRoman, C. (1969) Etude electromyographique de la motricité gastrique chez l'homme normal.Arch. Mal. Appar. Dig. 58, 517–530.Google Scholar
  16. Nagai, T. andProsser, C. L. (1963a) Patterns of conduction in smooth muscle.Am. J. Physiol. 204, 910–914.Google Scholar
  17. Nagai, T. andProsser, C. L. (1963b) Electrical parameters of smooth muscle cells.Am. J. Physiol. 204, 915–924.Google Scholar
  18. Nelson, T. S. andBecker, J. C. (1968) Simulation of the electrical and mechanical gradient of the small intestine.Am. J. Physiol. 214, 476.Google Scholar
  19. Nelson, T. S. (1967) Use of phaselock techniques for retrieval of the electrogastrogram from cutaneous and swallowed electrodes.Dig. 7th Int. Conf. on Med. and Biol. Eng. Google Scholar
  20. Nonomura, Y., Hotta, Y. andOnashi, H. (1966) Tetrodotoxin and manganese ions effects on electrical activity and tension in taenia coli of guinea pig.Science (NY) 152, 97–99.Google Scholar
  21. Prosser, C. L. (1962) Conduction in nonstraited muscles.Physiol. Rec. 42, Suppl. 5, 193–206.Google Scholar
  22. Sarna, S. K., Daniel, E. E. andKingma, Y. J. (1970) Simulation of electrical activity of small intestine.Gastroent. 58, 1050.Google Scholar
  23. Sobakin, M. A., Smirnov, I. P. andMishin, L. N. (1962) Electrogastrography,IRE Trans. Bio. Med. Electron., 129–132.Google Scholar
  24. Taylor, I. (1973) Myoelectric activity in the rectosigmoid in man.Proceedings of the 4th International Symposium G-I Mot. 109–119.Google Scholar
  25. Wankling, W. J., Brown, B. H., Collins, C. D. andDuthie, H. L. (1968) Basal electrical activity in the anal canal in man.Gut 9, 457.Google Scholar
  26. Waterfall, W. E., Brown, B. H., Duthie, H. L. andWhittaker, G. E. (1972) The effects of humoral agents on the myoelectrical activity of the terminal ileum.Gut 13, 528–534.Google Scholar

Copyright information

© International Federation for Medical & Biological Engineering 1975

Authors and Affiliations

  • B. H. Brown
    • 1
  • R. H. Smallwood
    • 1
  • H. L. Duthie
    • 2
  • C. J. Stoddard
    • 2
  1. 1.Regional Medical Physics DepartmentWeston Park HospitalSheffieldEngland
  2. 2.Department of SurgeryUniversity of Sheffield, Royal InfirmarySheffieldEngland

Personalised recommendations