The Calderón reproducing formula, windowed X-ray transforms, and radon transforms in LP-spaces

  • Boris Rubin


The generalized Calderón reproducing formula involving “wavelet measure” is established for functions f ∈ Lp(ℝn). The special choice of the wavelet measure in the reproducing formula gives rise to the continuous decomposition of f into wavelets, and enables one to obtain inversion formulae for generalized windowed X-ray transforms, the Radon transform, and k-plane transforms. The admissibility conditions for the wavelet measure μ are presented in terms of μ itself and in terms of the Fourier transform of μ.

Math Subject Classifications

Primary 44A05 secondary 42B99 

Keywords and Phrases

Wavelets Radon transforms Lp-spaces windowed X-ray transforms k-plane transforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berenstein, C.A. and Walnut, D.F. (1994). Local inversion of the Radon transform in even dimensions using wavelets. InProc. Conf. “75 Years of Radon Transform”,, Vienna, Austria 1992, Gindikin, S.G. and Michor, P., Eds., International Press, Hong Kong, 45–69.Google Scholar
  2. [2]
    Christ, M. (1984). Estimates for thek-plane transform.Indiana Univ. Math. J.,33, 891–910.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Coifman, R.R. and Weiss, G. (1977). Extensions of Hardy spaces and their use in analysis.Bull. Amer. Math. Soc.,83, 569–645.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Drury, S.W. (1989). A survey ofk-plane transform estimates.Contemporary Math.,91, 43–55.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Frazier, M., Jawerth, B., and Weiss, G. (1991). Littlewood-Paley theory and the study of function spaces.CBMS Reg. Conf. Ser. in Math.,79, Amer. Math. Soc., Providence, RI.zbMATHGoogle Scholar
  6. [6]
    Gonzales, F.B. (1991). On the range of the Radond-plane transform and its dual.Trans. Amer. Math. Soc.,327, 601–619.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Helgason, S. (1980).The Radon Transform. Birkhäuser, Boston.zbMATHGoogle Scholar
  8. [8]
    Holschneider, M. (1991). Inverse Radon transforms through inverse wavelet transforms.Inverse Problems,7, 853–861.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Kaiser, G.A. and Streater, R.F. (1992). Windowed Radon transforms, analytic signals, and wave equation. InWavelets—A Tutorial in Theory and Applications, Chui, C.K., Ed., Academic Press, New York, 399–441.Google Scholar
  10. [10]
    Keinert, F. (1989). Inversion ofk-plane transforms and applications in computer tomography.SIAM Rev.,31, 273–289.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Mattila, P. (1995).Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  12. [12]
    Murenzi, R. (1990). Doctoral Thesis. Louvain la Neuve.Google Scholar
  13. [13]
    Natterer, F. (1986).The Mathematics of Computerized Tomography. Wiley, New York.zbMATHGoogle Scholar
  14. [14]
    Oberlin, D.M. and Stein, E.M. (1982). Mapping properties of the Radon transform.Indiana Univ. Math. J.,31, 641–650.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Petrov, E.E. (1992). Moment conditions for thek-dimensional Radon transformation.Izv. Vyssh. Uchebn. Zaved. Math.,4, 49–53.zbMATHGoogle Scholar
  16. [16]
    Rao, M., Sikić, H., and Song, R. (1994). Application of Carleson's theorem to wavelet inversion.Control and Cybernetics,23, 761–771.zbMATHMathSciNetGoogle Scholar
  17. [17]
    Rubin, B. (1995). On Calderón's reproducing formula. InSignal and Image Representation in Combined Spaces, Zeevi, J. and Coifman, R., Eds., Academic Press, New York.Google Scholar
  18. [18]
    Rubin, B. (1996).Fractional Integrals and Potentials. Addison Wesley Longman, Essex, U.K.zbMATHGoogle Scholar
  19. [19]
    Rubin, B. (1995/96).Wavelet Type Representations of Riesz Fractional Derivatives. The Hebrew University of Jerusalem, Preprint No. 12.Google Scholar
  20. [20]
    Rubin, B. (1995/96). Inversion of Radon Transforms Using Wavelet Transforms Generated by Wavelet Measures.Math. Scand., to appear.Google Scholar
  21. [21]
    Rubin, B. (1995/96). Inversion ofk-plane transforms via continuous wavelet transforms.J. Math. Anal. Appl., to appear.Google Scholar
  22. [22]
    Saeki, S. (1995). On the reproducing formula of Calderon.J. Fourier Anal. Appl.,2, 15–28.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Smith, K.T. and Solmon, D.C. (1975). Lower dimensional integrability ofL 2-functions.J. Math. Anal. Appl.,51, 539–549.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Solmon, D.C. (1979). A note onk-plane integral transforms.J. Math. Anal. Appl.,71, 351–358.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Stein, E.M. (1970).Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ.zbMATHGoogle Scholar
  26. [26]
    Stein, E.M. (1993).Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillation Integrals. Princeton University Press, Princeton, NJ.Google Scholar
  27. [27]
    Strichartz, R.S. (1981).L p-estimates for Radon transforms in euclidean and non-euclidean spaces.Duke Math. J.,48, 699–727.zbMATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    Walnut, D. (1992). Applications of Gabor and wavelet expansions to the Radon transform.Probabilistic and Stochastic Methods in Analysis, with Applications, NATO ASI Series, Byrnes, J., et al., Eds., Kluwer Academic Publisher, The Netherlands, 187–205.Google Scholar

Copyright information

© Birkhäuser Boston 1998

Authors and Affiliations

  • Boris Rubin
    • 1
  1. 1.Department of MathematicsThe Hebrew University of JerusalemIsrael

Personalised recommendations