Reaction Kinetics and Catalysis Letters

, Volume 67, Issue 2, pp 273–279 | Cite as

ESR study of reduced vanadium-titanium oxide catalysts

  • A. A. Altynnikov
  • G. A. Zenkovets
  • V. F. Anufrienko


Reduction of vanadium-titanium oxide catalysts with hydrogen in the temperature range of 150–450°C results in the increase of the content of V4+ ions in substitution positions of TiO2 with the anatase structure. The temperature increase up to 250°C results in the growth of the spectral intensity of V4+ associates in substitution positions of anatase. At higher treatment temperatures their intensity decreases due to the formation of VO2 fragments in anatase. At 400°C and higher temperatures a solid solution of V4+ ions in rutile is formed.


Vanadium-titanium oxide catalyst reduction with hydrogen ESR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Centi, E. Giamello, D. Pinelli, F. Trifirò:J. Catal.,130, 220 (1991).CrossRefGoogle Scholar
  2. 2.
    I.E. Wachs, R.Y. Saleh, S.S. Chan, C.C. Chersich:Appl. Catal.,15, 339 (1991).Google Scholar
  3. 3.
    G. Busca, G. Centi, L. Marchetti, F. Trifirò:Langmuir,2, 568 (1986).CrossRefGoogle Scholar
  4. 4.
    M. Inomata, K. Mori, A.A. Miyamoto, T. Ui, Y. Murakami:J. Phys. Chem.,87, 754 (1983).CrossRefGoogle Scholar
  5. 5.
    G.C. Bond, J. Sarcany, G.D. Parfitt:J. Catal.,57, 476 (1979).CrossRefGoogle Scholar
  6. 6.
    E.M. Al’kaeva, T.V. Andrushkevich, G.A. Zenkovets, G.N. Kryukova, S.V. Tsybulya, E.B. Burgina:Proc. 3 rd World Cong. Oxidation Catal., p. 937. Elsevier, Amsterdam-Oxford-New York-Tokyo 1997.Google Scholar
  7. 7.
    R.V. Narayana, A. Venugopal, K.S.R. Rao, S.K. Masthan, V. Ven, K.V. Narayana, A. Venugopal, K.S.R. Rao, S.K. Masthan, V.V. Rao, P.K. Rao:Appl. Catal.,167, 11 (1998).CrossRefGoogle Scholar
  8. 8.
    Y. Kera, T. Inoue, J.M. Kare:Bull. Chem Soc. Japan,61, 761 (1978).CrossRefGoogle Scholar
  9. 9.
    P. Meriadeau, J.C. Vedrin:Nouv. J. Chim.,2, 133 (1978).Google Scholar
  10. 10.
    G. Busca, P. Tittarelli, E. Tronconi, P. Forzatti:J. Solid State Chem.,67, 91 (1987).CrossRefGoogle Scholar
  11. 11.
    G.N. Krykova, D.O. Klenov, G.A. Zenkovets:React. Kinet. Catal. Lett.,60, 179 (1997).Google Scholar
  12. 12.
    A.A. Altynnikov, G.A. Zenkovets, V.F. Anufrienko:React. Kinet. Catal. Lett.,66, 85 (1999).Google Scholar
  13. 13.
    G.M. Zverev:Zh. Exper. Teor. Fiz.,44, 1859 (1963).Google Scholar
  14. 14.
    A.A. Altynnikov, G.A. Zenkovets, V.F. Anufrienko:React. Kinet. Catal. Lett.,52, 59 (1994).CrossRefGoogle Scholar
  15. 15.
    F.S. Gadzhieva, V.F. Anufrienko:Zh. Strukt. Khim.,23, 43 (1982).Google Scholar
  16. 16.
    A.A. Blyumenfeld, V.V. Voevodskii, A.G. Semenov:Applications of Electron Spin Resonance in Chemistry, p. 91. SB AS USSR, Novosibirsk 1962 (in Russian).Google Scholar
  17. 17.
    H.A. Kuska, M.T. Rogers:Electron Spin Resonance of First Row Transition Metal Complex Ions. New York 1968.Google Scholar
  18. 18.
    D. Kivelsov, S. Lee:J. Chem. Phys.,41, 1896 (1964).CrossRefGoogle Scholar
  19. 19.
    G.M. Zverev, A.M. Prokhorov:Zh. Exper. Teor. Fiz.,39, 222 (1960).Google Scholar
  20. 20.
    V.S. Grunin, V.A. Ioffe, I.B. Patrina, G.D. Dabtyan:Fizika Tverdogo Tela,17, 3044 (1975).Google Scholar
  21. 21.
    L. Lietti, G.L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello, F. Bregani:Catalysis Today,29, 143 (1996).CrossRefGoogle Scholar
  22. 22.
    H.J. Gerritsen, H.R. Levis:Phys. Rev.,57, 1660 (1997).Google Scholar
  23. 23.
    S.V. Tsybulya, G.N. Kryukova, G.A. Zenkovets:Zh. Struk. Khim. (in press).Google Scholar
  24. 24.
    E.G. Ismailov, N.G. Maksimov, V.F. Anufrienko:Izv. AN SSSR, Ser. Khim.,2, 272 (1976).Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • A. A. Altynnikov
    • 1
  • G. A. Zenkovets
    • 1
  • V. F. Anufrienko
    • 1
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations