Medical and biological engineering

, Volume 11, Issue 3, pp 336–339 | Cite as

The specific resistance of blood at body temperature

  • L. A. Geddes
  • C. Sadler
Article

Abstract

The specific resistance of human, canine, bovine, and equine blood with a haematocrit range extending from 0 to 70% and at 37°C was measured at 25 kHz. The data obtained were subjected to various curve-fitting procedures; in all cases, the resistivity was found to increase with increasing haematocrit.

Keywords

blood resistivity specific resistance (blood) 

Sommaire

Nous avons mesuré la résistance spécifique à 25 kHz du sang humain, canin, bovin et équin dans l'intervalle hématocrite allant de 0 à 70% à 37°C. Nous avons essayé de tracer diverses courbes à travers les résultats obtenus dans chaque cas, nous avons trouvé que la résistivité croît en fonction de l'augmentation de l'hématocrite.

Zusammenfassung

Der spezifische Widerstand von Blut des Menschen, des Hundes, des Rindes und des Pferdes mit einem Haematokritbereich von 0 bis 70% bei 37°C wurde bei 25 kHz gemessen. Die erhaltenen Daten wurden verschiedenen Nährungskurven angepasst; in allen Fällen zeigte sich ein Anwachsen des Widerstandes mit wachsenden Haematokrit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fricke, H. (1925) A mathematical treatment of the electric conductivity and capacity of disperse systems.Phys. Rev. 24, Series 2, 575–587.CrossRefGoogle Scholar
  2. Geddes, L. A., andBaker, L. E. (1967) The specific resistance of biological material.Med. & Biol. Eng. 5, 271–293.Google Scholar
  3. Geddes, L. A., andda Costa, C. P. (1973) The specifi resistance of canine blood at body temperature.IEEE Trans. BME-19, 20(1), 51–53.Google Scholar
  4. Kubicek, W. G., From, A. H. L., Patterson, R. P., Witsoe, D. A., Castenda, A., Lilleki, R. C., andErsek, R. (1920) Impedance cardiography as a noninvasive means to monitor cardiac function.J. Amer. Ass. Adv. Med. Instrum. 4, 79–84.Google Scholar
  5. Kubicek, W. G., Karneges, J. N., Patterson, R. P., Witsoe, D. A., andMaltson, R. H. (1966) Development and evaluation of an impedance cardiac output system.Aerosp. Med. 37, 1208–1212.Google Scholar
  6. Kubicek, W. G., Witsoe, D. A., andPatterson, R. P. (1967) Development and evaluation of an impedance cardiographic system to measure cardiac output and other cardiac parameters. NASA Report NAS 9-4500, lst July 1967-30th June 1968, NASA Manned Spacecraft Center, Houston, Texas.Google Scholar
  7. Kinnen, E., Kubicek, W., Hill, P., andTurton G. (1964) Thoracic cage impedance measurements. Tech. Documentary Rep. SAM-TDR-64-5, USAF School of Aerospace Med., Brooks AFB, Texas, USAGoogle Scholar
  8. Maxwell, J. C. (1904) A treatise on electricity and magnetism, (Clarendon Press, Oxford).MATHGoogle Scholar
  9. Rosenthal, R. L., andTobias, C. W. (1948) Measurement of the electric resistance of human blood.J. Lab. Clin. Med. 13, 1110–1122.Google Scholar
  10. Schwan, H. P. (1963) Determination of biological impedances in physical techniques in biological research,W. Nastuk (Ed.), (Academic Press, New York), Vol. VIB.Google Scholar

Copyright information

© International Federation for Medical & Biological Engineering 1973

Authors and Affiliations

  • L. A. Geddes
    • 1
  • C. Sadler
    • 2
  1. 1.Division of Biomedical EngineeringBaylor College of MedicineHoustonUSA
  2. 2.Rice UniversityHoustonUSA

Personalised recommendations