Medical and biological engineering

, Volume 9, Issue 3, pp 185–199 | Cite as

Engineering and physiological considerations of direct capacitor-discharge ventricular defibrillation

  • L. A. Geddes
  • W. A. Tacker
Article

Abstract

The amount of energy, current and charge per gram of heart were determined on a series of 36 dogs. The data, which are examined on the basis of current duration (time constant), show that the three criteria are different. The optimum duration range using energy as a criterion is 0·03–3 ms. Minimum peak current was required with a 4 ms duration capacitor discharge pulse. There was no optimum duration for minimum charge. It was found that although short-duration current (0·02–3·0 ms) produced defibrillation, the high current required impaired the contractility of the ventricles. From this study, the optimum range of capacitor-discharge current for defibrillation is 0·3–4 ms. Estimates are presented on the amounts of energy, current and charge to defibrillate the ventricles of large animals.

Sommaire

Les quantités d'énergie, de courant et de charge par un gramme de coeur ont été déterminées dans une série de 36 coeurs canins. Les données acquises, examinées sur la base de la durée du courant (constante de temps), démontrent que les trois critériums sont différents. La durée optimale est de 0,03–3 ms quand l'énergie est prise comme critérium. Un coruant de crête minimum était nécessaire quand la durée de la décharge du condensateur était 4 ms. Il n'y avait pas de durée optimale pour une charge minimum. On a trouvé que des impulsions de courant de courte durée (0,02–3,0 ms) causaient la défibrillation mais le courant élevé qui était nécessaire empêchait la contractilité des ventricules. La conclusion de notre étude est que la gamme optimale de courant de décharge capacitive comme moyen de la défibrillation est de 0,3 à 4 ms. Les quantités d'énergie, de courant et de charge électrique nécessaires pour la défibrillation des ventricules en gros animaux ont été evaluées approximativement.

Zusammenfassung

Der Betrag an Energie, Strom und Ladung pro Gramm Herz wurde in einer an Hand von 36 Hunden durchgeführten Versuchsreihe bestimmt. Die Werte, die auf der Grundlage der Stromdauer (Zeitkonstante) untersuchtwurden, zeigten, daßsich die drei Kriterien verschieden verhalten. Wählt man die Energie als Kriterium, so liegt der optimale zeitliche Bereich zwischen 0,03 und 3 ms. Der niedrigste Spitzenstrom wurde mit Kondensatorentladungsimpulsen von 4 ms Dauer benötigt. Für die Mindestladung ergab sich keine optimale Impulsdauer. Es stellte sich heraus, daß kurzzeitige Stromimpulse (0,02–3,0 ms) das Herzkammerflattern wohl unterdrückten, der hierzu erforderliche starke Strom jedoch die Kontraktilität der Herzkammern heruntersetzte. Aus der Studie ergab sich, daß der für die Unterdrückung des Herzkammerflatterns optimale Bereich des Kondensatorentladungsstromes von 0,3 bis 4 ms geht. Schätzungseerte für Energie, Strom und Ladung, wie zur Bekämpfung des Herzkammerflatterns bei großen Tieren erforderlich sind, werden dargeboten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abernathy, E. M., Dossey, J. E., Geddes, L. A. andHoff, H. E. (1963) Ventricular defibrillation in the dog by condenser discharge applied directly to the heart.Card. Res. Center Bull. 2, 9–14.Google Scholar
  2. Balagot, R. C., Druz, W. S., Ramadan, M., Lopez-Belio, M., Jobgen, E., Tomita, M. andSadove, M. S. (1964) A monopulse d.c. current defibrillation for ventricular defibrillation.J. Thorac. Card. Surg. 47, 487–504.Google Scholar
  3. Bouvarin, Y., Laumont, R. andBerthier, Y.(1967) Etude clinique de la fibrillation ventriculaire.Archs Mal. Coeur. 2, 213–232Google Scholar
  4. Brown, K. W. G., Whitehead, E. H. andMorrow, J. D. (1964) Treatment of cardiac arrythmias with synchronized electrical countershock.Can. Med. Ass. J. 90, 103–105.Google Scholar
  5. Cox, A. R., Dodds, W. A. andTrapp, W. G.(1963) Successful use of d.c. external defibrillation after failure of an a.c. external defibrillator.Can. Med. Ass. J. 89, 1193–1195.Google Scholar
  6. Donoso, E., Cohn, L. J. andFriedberg, C. K.(1967) Ventricular arrythmias after precordial electroshock.Am. Heart J. 73, 595–601.CrossRefGoogle Scholar
  7. Druz, W. S. (1969) The design rationale of defibrillators.J. Am. Ass. Med. Instrum. 3, 65–69.Google Scholar
  8. Editor (1953) Defibrillation of the ventricles.Circulation Res. 1, 191–199.Google Scholar
  9. Edmark, K. W. (1963) Simultaneous voltage and current waveforms generated during internal and external direct current pulse defibrillation.Surg. Forum 14, 262–264.Google Scholar
  10. Ferris, L. P., King, B. G., Spence, P. W. andWilliams, H. B. (1936) Effects of electric shock on the heart.Elect. Engng 55, 498–515.Google Scholar
  11. Ferris, C. D., Moore, T. W., Khazei, A. H. andCowley, R. A. (1969) A study of the parameters involved in alternating current defibrillation.Med. biol. Engng 7, 17–29.Google Scholar
  12. Gurvich, N. L. andYuniev, G. S. (1946) Restoration of regular rhythm in the mammalian fibrillating heart.Am. Rev. Soviet Med. 3, 236–239.Google Scholar
  13. Gurvich, N. L. andYuniev, G. S. (1947) Restoration of heart rhythm during fibrillation by a condenser discharge.Am. Rev. Soviet Med. 4, 252–256.Google Scholar
  14. Jude, J. R., Kouwenhoven, W. B. andKnickerbocker, G. G. (1962) An experimental and clinical study of a portable external cardiac defibrillator.Surg. Forum 13, 185–187.Google Scholar
  15. Jude, J. R., Scheinin, T. M., Knickerbocker, G. G. andKouwenhoven, W. B. (1963) Cardiac defibrillation: a comparison of a.c. and d.c. countershock.Circulation 28, 744.Google Scholar
  16. Kouwenhoven, W. B. andMilnor, W. R. (1954) Treatment of ventricular fibrillation using a capacitor discharge.J. appl. Physiol. 7, 253–257.Google Scholar
  17. Kouwenhoven, W. B. andMilnor, W. R. (1955) Electric defibrillation.Trans. A.I.E.E. 74, 361–364.Google Scholar
  18. Kouwenhoven, W. B., Milnor, W. R., Knickerbocker, G. G. andChestnut, W. R. (1957) Closed-chest defibrillation of the heart.Surgery 42, 550–561.Google Scholar
  19. Kuhn, L. A. (1964) Electrical conversion of cardiac arrythmias.Am. Heart J. 67, 709–711.CrossRefGoogle Scholar
  20. Leeds, S. E., Mackay, R. S. andMooslin, K. (1951) Production of ventricular fibrillation and defibrillation in dogs by means of accurately measured shocks across exposed heart.Am. J. Physiol. 165, 179–187.Google Scholar
  21. Lefemine, A. A., Amarasingham, R., Harken, D. E., Berkovitz, B. andLown, B. (1962) Defibrillation by direct and alternating currents of normal and reduced temperatures.Surg. Forum 13, 182–185.Google Scholar
  22. Lown, B., Neuman, J., Amarasingham, R. andBerkovitz, B. (1962) Comparison of alternating current with direct current electroshock across the closed chest.Am. J. Cardiol. 2, 223–233.CrossRefGoogle Scholar
  23. Mackay, R. S. andLeeds, S. E. (1953) Physiological effects of condenser discharges with application to tissue stimulation and ventricular defibrillation.J. appl. Physiol. 6, 67–75.Google Scholar
  24. Mackay, R. S. (1954) Ventricular defibrillators.J. Am. med. Ass. 154, 1421–1422.Google Scholar
  25. Main, F. B., Aberdeen, E. andGerbode, L. A. (1963) Comparison of ventricular function subsequent to multiple defibrillations utilizing the alternating current and the direct current defibrillators.Surg. Forum 14, 258–289.Google Scholar
  26. McFarlane, J., Geddes, L. A., Maddux, J. S. andHoff, H. E. (1967) Threshold energy for defibrillation of the canine ventricle.Card. Res. Cent, Bull. 6, 58–63.Google Scholar
  27. Palaganas, M., Fink, N. andFay, J. E. (1964) Quinidine-induced ventricular fibrillation treated by closed chest massage, external countershock and procaine amide.Med. Serv. J. 20, 734–744.Google Scholar
  28. Parmley, L. F. andMcGerty, J. L. (1962) External countershock treatment of ventricular fibrillation and tachycardia. A case report.Am. Heart J. 63, 692–698.CrossRefGoogle Scholar
  29. Peirce, E. C. andSprawls, P. (1965) Ventricular fibrillation—a comparison of reversion by direct and alternating current in the perfused dog.Trans. Am. Soc. artif. int. Organs 11, 295–300.Google Scholar
  30. Peleska, B. (1966) Optimal parameters of electrical impulses for defibrillation by condenser discharges.Circulation Res. 18, 10–17.Google Scholar
  31. Prevost, J. L. andBatteli, F. (1899) The effects of electric discharge on the hearts of mammals.C.r. hébd. Séanc. Acad. Sci. 129, 1267–1268.Google Scholar
  32. Tacker, W. A., Geddes, L. A. andHoff, H. E. (1968) Defibrillation without A-V block using capacitor discharge with added inductance.Circulation Res. 29, 633–638.Google Scholar
  33. Tacker, W. A., Havens, W. andGeddes, L. A. (1968) Minimum duration of capacitor discharge current for indirect ventricular defibrillation in the dog.Card. Res. Center Bull. 7, 21–26.Google Scholar
  34. Tacker, W. A., Geddes, L. A., McFarlane, J., Milnor, W., Gullett, J., Havens, W., Green, E. andMoore, J. (1969) The optimum current duration for capacitor discharge defibrillation of the canine ventricles.J. Appl. Physiol. Google Scholar
  35. Witzel, D. A., Geddes, L. A. andMcFarlane, J. (1966) Electrical ventricular defibrillation in the calf.The Southwestern Veterinarian 20 (1), 25–30.Google Scholar
  36. Witzel, D., Geddes, L. A., Hoff, H. E. andMcFarlane, J. (1968) Electrical defibrillation of the equine heart.Ambn. J. vet. Res. 29 (6), 1279–1285.Google Scholar
  37. Yarbrough, R., Ussery, G. andWhitley, J. (1964) A comparison of the effects of a.c. and d.c. countershock on ventricular function in thoractomized dogs.Am. J. Cardiol. 14, 504–512.CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 1971

Authors and Affiliations

  • L. A. Geddes
    • 1
  • W. A. Tacker
    • 1
  1. 1.Division of Biomedical Engineering, Department of PhysiologyBaylor College of MedicineHoustonUSA

Personalised recommendations