Histochemistry and Cell Biology

, Volume 106, Issue 4, pp 367–374 | Cite as

Localization, expression, and characterization of guanylin in the rat adrenal medulla

  • M. Reinecke
  • I. David
  • D. Loffing-Cueni
  • P. Ablinger
  • Y. Cetin
  • M. Kuhn
  • W. G. Forssmann
Original Paper

Abstract

The peptide guanylin, recently isolated from the intestine, and localized to cells of the gut mucosa, is involved in electrolyte/water transport in the intestinal epithelium by means of a paracrine mode of regulation. Since high amounts of this peptide are present also in the systemic circulation, we investigated the adrenal gland as a potential endocrine source of guanylin. Using a reverse transcriptase-polymerase chain reaction and hybridization with an internal oligonucleotide designed for rat guanylin, 514-bp signals were obtained in intestinal tissue and adrenal gland. Successive analyses of extracts from intestine and adrenal gland by HPLC, western blotting, and radioimmunoassay revealed the presence of the same high-molecular mass (about 12.4 kDa) guanylin that corresponds to the mass of the guanylin prohormone. About 60 fmol/ml of circulating immunoreactive guanylin was determined in plasma. Localization studies with antisera directed against different epitopes of guanylin revealed that, in the adrenal gland, guanylin immunoreactivity is restricted to the medulla, where it is mainly confined to norepinephrine chromogranin A-containing cells. On the ultrastructural level, guanylin immunoreactivity was exclusively located to secretory granules of chromaffin cells. The present data indicate that, in addition to entero-endocrine cells, the adrenal medulla represents a further source of guanylin. Thus, an endocrine mode of function of guanylin may accrue to its hitherto evidenced paracrine action in fluid transport in the intestinal epithelium. Furthermore guanylin may be considered as a neurohormonal peptide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cetin Y, Bargsten G, Grube D (1992) Mutual relationship between chromogranins A and B and gastrin in individual gastrin cells. Proc Natl Acad Sci USA 89:2912–2916.PubMedCrossRefGoogle Scholar
  2. Cetin Y, Kuhn M, Kulaksiz H, Adermann K, Bargsten G, Grube D, Forssmann WG (1994) Enterochromaffin cells of the digestive system: cellular source of guanylin, a guanylate cyclase-activating peptide. Proc Natl Acad Sci USA 91:2935–2939PubMedCrossRefGoogle Scholar
  3. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 162:156–159PubMedCrossRefGoogle Scholar
  4. Cohen Y, Mann EA, Lau C, Henning SJ, Giannella RA (1992) A gradient in expression of theEscherichia coli heat-stable enterotoxin receptor exists along the villus-tocrypt axis of rat small intestine. Biochem Biophys Res Commun 186:483–490PubMedCrossRefGoogle Scholar
  5. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: an endogenous activator of intestinal guanylin cyclase. Proc Natl Acad Sci USA 89:947–951PubMedCrossRefGoogle Scholar
  6. De Sauvage FJ, Keshav S, Kuang, WJ, Gillet N, Henzel W, Goeddel DV (1992) Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci USA 89:9089–9093PubMedCrossRefGoogle Scholar
  7. Field M, Graf LH, Laird WJ, Smith PL (1978) Heat-stable enterotoxin ofEscherichia coli: in vivo effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75:2800–2804PubMedCrossRefGoogle Scholar
  8. Forte LR, Currie MG (1995) Guanylin: a peptide regulator of epithelial transport. FASEB J 9:643–650PubMedGoogle Scholar
  9. Forte LR, Krause WJ, Freeman RH (1989)Escherichia coli enterotoxin receptors: localization in opossum kidney, intestine and testis. Am J Physiol 257:F874-F881PubMedGoogle Scholar
  10. Hill O, Kuhn M, Zucht HD, Cetin Y, Kulaksiz H, Adermann K, Klock G, Rechkemmer G, Forssmann WG (1995) Analysis of human guanylin gene and the processing and cellular localization of the peptide. Proc Natl Acad Sci USA 92:2046–2050PubMedCrossRefGoogle Scholar
  11. Krause WJ, Freeman RH, Forte LR (1990) Autoradiographic demonstration of specific binding sites forE. coli enterotoxin in various epithelia of the North American opossum. Cell Tissue Res 260:387–394PubMedCrossRefGoogle Scholar
  12. Krause WJ, Cullingford GL, Freeman RH, Eber SL, Richardson KC, Fok KF, Currie MG, Forte LR (1994) Distribution of heat-stable enterotoxin/guanylin receptors in the intestinal tract of man and other mammals. J Anat 184:407–417PubMedGoogle Scholar
  13. Kuhn M, Raida M, Adermann K, Schulz-Knappe P, Gerzer R, Heim JM, Forssmann WG (1993) The circulating bioactive form of human guanylin is a high molecular weight peptide (10.3 kDa). FEBS Lett 318:205–209PubMedCrossRefGoogle Scholar
  14. Kuhn M, Kulaksiz H, Adermann K, Rechkemmer G, Forssmann WG (1994) Radioimmunoassay for circulating human guanylin. FEBS Lett 341:218–222PubMedCrossRefGoogle Scholar
  15. Lewis LG, Witte DP, Laney DW, Currie MG, Cohen MB (1993) Guanylin mRNA is expressed in villous enterocytes of the rat small intestine and superficial epithelia of the rat colon. Biochem Biophys Res Commun 196:553–560PubMedCrossRefGoogle Scholar
  16. Li Z, Goy MF (1993) Peptide-regulated guanylate cyclase pathways in rat colon; in situ localization of GCA, GCC and guanylin mRNA. Am J Physiol 265:G394-G402PubMedGoogle Scholar
  17. Li Z, Taylor-Blake B, Light AR, Goy MF (1995) Guanylin, an endogenous ligand for C-type guanylate cyclase, is produced by goblet cells in the rat intestine. Gastroenterology 109:1863–1875.PubMedCrossRefGoogle Scholar
  18. Livett BG, Day R, Elde RP, Howe PRC (1982) Co-storage of enkephalins and adrenaline in the bovine adrenal medulla. Neuroscience 7:1323–1332PubMedCrossRefGoogle Scholar
  19. Reinecke M, Maake C (1993) A phylogenetic survey of pancreastatin and chromagranin immunoreactivity in chromaffin (TH-, DBH-, and PNMT-immunoreactive) cells of the adrenal organ of vertebrates. Gen Comp Endocrinol 90:251–265PubMedCrossRefGoogle Scholar
  20. Schulz S, Green C, Yuen PST, Garbers DL (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948PubMedCrossRefGoogle Scholar
  21. Schulz S, Chrisman TD, Garbers DL (1992) Cloning and expression of guanylin. Its existence in various mammalian tissues. J Biol Chem 267:16019–16021PubMedGoogle Scholar
  22. Wiegand RC, Kato J, Currie MG (1992a) Rat guanylin cDNA: characterization of the precursor of an endogenous activator of intestinal guanylate cyclase. Biochem Biophys Res Commun 185:812–817PubMedCrossRefGoogle Scholar
  23. Wiegand RC, Kato J, Huang MD, Fok KF, Kachur JF, Currie MG (1992b) Human guanylin: cDNA isolation, structure, and activity. FEBS Lett 311:150–154PubMedCrossRefGoogle Scholar
  24. Wolfensberger M, Forssmann WG, Reinecke M (1995) Localisation and coexistence of atrial natriuretic peptide (ANP) and neuropeptide Y (NPY) in vertebrate adrenal chromaffin cells immunoreactive to TH, DBH, and PNMT. Cell Tissue Res 280:267–276PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Reinecke
    • 1
  • I. David
    • 1
  • D. Loffing-Cueni
    • 1
  • P. Ablinger
    • 1
  • Y. Cetin
    • 2
  • M. Kuhn
    • 3
  • W. G. Forssmann
    • 3
  1. 1.Institute of Anatomy, Division of NeuroendocrinologyUniversity of Zürich-IrchelZürichSwitzerland
  2. 2.Department of AnatomyMedical School of HannoverGermany
  3. 3.Lower Saxony Institute for Peptide ResearchHannoverGermany

Personalised recommendations