Environmental Management

, Volume 19, Issue 1, pp 39–55

Methane fluxes from artificial wetlands: A global appraisal

  • Francis Mudge
  • W. Nejl Adger
Research

Abstract

Methane emissions make an important contribution to the enhanced greenhouse effect, emissions from rice growing being one of its major anthropogenic sources. The estimation of global fluxes of methane from rice and from coarse fiber production depends on extrapolating observed data across countries and agroclimatic zones: the estimates are therefore imprecise. We present a revised estimate of global emissions of 96 Tg CH4/yr, given 1991 rice areas, and 1991 production data for those tropical coarse fibers that also produce methane under anaerobic conditions. This is higher than many previous studies, which systematically underestimated the fluxes from tropical countries. As the world's population increases, the demand for rice will rise. This demand can only be satisfied through greater rice production, either by bringing new areas into rice growing or by using the present area more intensively. Strategies based on improved water management and fertilizer use will allow increased rice production and yields and reduce the methane flux per unit or rice production.

Key Words

Greenhouse gases Methane emissions Rice Coarse fibers Mitigation strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adger, W. N., and Brown, K. 1994. Land use and the causes of global warming. John Wiley, Chichester.Google Scholar
  2. Aselmann, I., and P. J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions.Journal of Atmospheric Chemistry 8:307–358.CrossRefGoogle Scholar
  3. Bachelet, D., and H. U. Neue. 1993. Methane emissions from wetland rice areas of Asia.Chemosphere 26:219–237.CrossRefGoogle Scholar
  4. Bazzaz, F. A., and E. D. Fajer. 1992. Plant life in a CO2 rich world.Scientific American 266 (January):18–24.Google Scholar
  5. Boden, T. W., R. J. Sepanski, and F. W. Stoss. 1991. Trends 91: A Compendium of data on global change. ORNL/CDIAC-46. Oak Ridge National laboratory. Oak Ridge, Tennessee, 665 pp.Google Scholar
  6. Bouwman, A. F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. Pages 61–127in A. F. Bouwman (ed.), Soils and the greenhouse effect. John Wiley, Chichester.Google Scholar
  7. Cheng, Y. S. 1984. Effects of drainage on the characteristics of paddy soils in China. Pages 417–426in IRRI (eds.), Organic matter and rice. International Rice Research Institute. Los Baños, Philippines.Google Scholar
  8. Cicerone, R. J. and R. S. Oremland. 1988. Biogeochemical aspects of atmospheric methane.Global Biogeochemical Cycles 2:299–327.Google Scholar
  9. Denier van der Gon, H. A. C., H. U. Neue, R. S. Lantin, R. Wassmann, M. C. R. Alberto, J. B. Aduna, and M. J. P. Tan. 1992. Controlling factors of methane emissions from rice fields. Pages 81–92in N. H. Batjes, and E. M. Bridges (eds.), World inventory of soil emission potentials. Wageningen Agricultural University, Wageningen, Netherlands.Google Scholar
  10. Euroconsult, 1989. Agricultural compendium for rural development in the tropics and subtropics, 3rd ed. Elsevier, Amsterdam, 740 pp.Google Scholar
  11. FAO (Food and Agriculture Organization). 1991. World soil resources: An Explanatory Note on the FAO world soil resources map. Report No. 66, FAO, Rome.Google Scholar
  12. FAO (Food and Agriculture Organization). 1992. Production yearbook, 1991. FAO, Rome.Google Scholar
  13. Hayes, P., and K. Smith (eds.), 1993. The global greenhouse regime: Who pays? Earthscan, London, 382 pp.Google Scholar
  14. Hesse, P. R. 1984. Potential of organic materials for soil improvement. Pages 38–42in IRRI (eds.), Organic matter and rice. International Rice Research Institute, Los Baños, Philippines.Google Scholar
  15. Holzapfel-Pschorn, A., and W. Seiler. 1986. Methane emisions during a cultivation period from an Italian rice paddy.Journal of Geophysical Research 91:11803–11814.CrossRefGoogle Scholar
  16. Holzapfel-Pschorn, A., R. Conrad, and W. Seiler. 1985. Production, oxidation and emissions of methane in rice paddies.FEMS Microbiology: Ecology 31:343–351.CrossRefGoogle Scholar
  17. Houghton, J. T., B. A. Callander, and S. K. Varney (eds.), 1992. Climate change 1992: The supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, 200 pp.Google Scholar
  18. Huke, R. E. 1982. Rice area by type of culture: South, South-East and East Asia. International Rice Research Institute, Los Baños, Philippines.Google Scholar
  19. Khalil, M. A. K., and R. A. Rasmussen. 1990. Constraints on the global sources of methane and an anlysis of recent budgets.Tellus 42B:229–236.Google Scholar
  20. Khalil, M. A. K., R. A. Rasmussen, M. X. Wang, and L. X. Ren. 1991. Methane emissions from rice fields in China.Environmental Science and Technology 25:979–981.CrossRefGoogle Scholar
  21. Matthews, E., I. Fung, and J. Lerner. 1991. Methane emission from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions.Global Biogeochemical Cycles 5:3–24.CrossRefGoogle Scholar
  22. Neue, H. J. 1993. Methane emissions from rice fields.Bio-Science 43:466–474.Google Scholar
  23. Neue, H. U., and H. W. Scharpenseel. 1984. Gaseous products of the decomposition of organic matter in submerged soils. Pages 311–327in IRRI (eds.), Organic matter and rice. International Rice Research Institute, Los Baños, Philippines.Google Scholar
  24. Neue, H. U., P. Becker-Heidmann, and H. W. Scharpenseel. 1990. Organic matter dynamics, soils properties and cultural practices in rice land and their relationship to methane production. Pages 457–466in A. F. Bouwan (ed.), Soils and the greenhouse effect. John Wiley, Chichester.Google Scholar
  25. Ponnamperuma, F. N., 1984a. Effects of drainage on the soil characteristics of paddy soils in China: Comment on Cheng. Page 427in IRRI (eds.), Organic matter and rice. International Rice Research Institute, Los Ba≩s, Philippines.Google Scholar
  26. Ponnamperuma, F. N. 1984b. Straw as a source of nutrients for wetland rice. Pages 117–136in IRRI (eds.), Organic matter and rice. International Rice Research Institute, Los Baños, Philippines.Google Scholar
  27. Purseglove, J. W. 1974. Tropical crops: Dicotyledons. Longman, London, 719 pp.Google Scholar
  28. Purseglove, J. W., 1975. Tropical crops: Monocotyledons. Longman, London, 607 pp.Google Scholar
  29. Rosenzweig, C., M.L. Parry, G. Fischer, and K. Frohberg. 1993. Climate change and world food supply. Environmental Change Unit, University of Oxford, Research Report No. 3, 28pp.Google Scholar
  30. Sass, R. L., F. M. Fischer, P. A. Harcombe, and F. T. Turner. 1991. Methane production and emission in a Texan agricultural wetland.Global Biogeochemical Cycles 4:47–68.Google Scholar
  31. Schütz, H., W. Seiler, and R. Conrad. 1989a. Processes involved in formation and emission of methane in rice paddies.Biogeochemistry 7:33–53.CrossRefGoogle Scholar
  32. Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, and W. Seiler. 1989b. A three year continuous record on the influence of day time, season and fertilizer treatment on the methane emissions rates from an Italian rice paddy field.Journal of Geophysical Research 94:16405–16416.Google Scholar
  33. Sebacher, D. I., R. C. Harriss, K. B. Bartlett, S. M. Sebacher, and S. S. Grice, 1986. Atmospheric methane sources: Alaskan tundra bogs, an alphine fen, and a subarctic boreal marsh.Tellus 38B:1–10.CrossRefGoogle Scholar
  34. Subak, S., P. Raskin, and D. Von Hippel. 1993 National greenhouse gas accounts: Current anthropogenic sources and sinks.Climatic Change 25:15–58.CrossRefGoogle Scholar
  35. Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget.Science 247:1431–1438.Google Scholar
  36. Venkataraman, A. 1984. Development of organic matter-based agricultural systems in South Asia. Pages 57–70in IRRI (eds.), Organic matter and rice. International Rice Research Institute, Los Baños, Philippines.Google Scholar
  37. Wassmann, R., H. Papen, and H. Rennenberg. 1993. Methane emissions from rice paddies and possible mitigation strategies.Chemosphere 26:201–217.CrossRefGoogle Scholar
  38. Watanabe, I. 1984. Anaerobic decomposition of organic matter in flooded rice soils. Pages 237–257in IRRI (eds.) Organic matter and rice. International Rice Research Institute, Los Baños, Philippines.Google Scholar
  39. Watson, R. T., L. G. Meira Filho, E. Sanhueza, and A. Janetos. 1992. Greenhouse gases: sources and sinks. Pages 29–46in J. T. Houghton, B. A. Callander, and S. K. Varney (eds.), Climate change 1992: The supplementary report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge.Google Scholar
  40. Wigley, T. M. L., and S. C. Raper. 1992. Implications for climate and sea level rise of revised IPCC emissions scenarios.Nature 357:293–300.CrossRefGoogle Scholar
  41. Williams, C. N., W. Y. Chew, and J. A. Rajaratnam. 1980. Tree and field crops of the wetter regions of the tropics. Longman, Harlow.Google Scholar
  42. World Bank. 1992. World development report 1992. Oxford University Press, New York.Google Scholar
  43. WRI (World Resources Institute). 1990. World resources 1990–91. Oxford University Press, Oxford.Google Scholar
  44. WRI (World Resources Institute). 1992. World resources 1992–1993. Oxford University Press, Oxford.Google Scholar
  45. Yagi, K. and K. Minami. 1990. Effects of organic matter applications on methane emissions from Japanese paddy fields. Pages 467–473 in A. F. Bouwman (ed.) Soils and the greenhouse effect. John Wiley, Chichester.Google Scholar
  46. Young, A. 1976. Tropical soils and soil survey. Cambridge Universrity Press, Cambridge.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • Francis Mudge
    • 1
    • 2
  • W. Nejl Adger
    • 1
    • 2
  1. 1.Centre for Social and Economic Research on the Global EnvironmentUniversity of East AngliaNorwichUK
  2. 2.University College LondonLondonUK

Personalised recommendations