Journal of Dynamical and Control Systems

, Volume 3, Issue 1, pp 51–89 | Cite as

On problems related to growth, entropy, and spectrum in group theory

  • R. Grigorchuk
  • P. De La Harpe


We review some known results and open problems related to the growth of groups. For a finitely generated group Γ, given whenever necessarytogether with a finite generating set, we discuss the notions of
  1. (1)

    uniformly exponential growth,

  2. (2)

    growth tightness,

  3. (3)

    regularity of growth series,

  4. (4)

    classical growth series (with respect to word lengths),

  5. (5)

    growth series with respect to weights,

  6. (6)

    complete growth series,

  7. (7)

    spectral radius of simple random walks on Cayley graphs.


1991 Mathematics Subject Classification


Key words and phrases

Growth growth series entropy spectral radius Laplacian group Cayley graph quasi-isometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Adel'son-Vel'skii and Yu. A. Sreider, The Banach mean on groups. (Russian)Uspekhi Mat. Nauk, Nov. Ser. 12 (1957), No. 6, 131–136.MATHMathSciNetGoogle Scholar
  2. 2.
    S. I. Adyan, Random walks on free periodic groups.Math. USSR Izv. (Russian)21 (1983), No. 3, 425–434.MATHCrossRefGoogle Scholar
  3. 3.
    J. M. Alonso, Growth functions of amalgams. In: Arboreal Group Theory, Vol. 19. R. C. Alperin ed.,MSRI Publ, Springer, 1991, 1–34.Google Scholar
  4. 4.
    V. Arnold and A. Krylov, Uniform distribution of points on a sphere and some ergodic properties of solutions of linear differential equations in a complex region. (Russian)Dokl. Akad. Nauk SSSR 148 (1963), 9–12.MATHMathSciNetGoogle Scholar
  5. 5.
    A. Avez, Entropie des groupes de type fini.C. R. Acad. Sci. Paris, Sér. A275 (1972), 1363–1366.MATHMathSciNetGoogle Scholar
  6. 6.
    I. K. Babenko, Problems of growth and rationality in algebra and topology.Russ. Math. Surv. 41 (1986), No. 2, 117–175.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    —, Closed geodesics, asymptotic volume, and characteritics of group growth. (Russian)Math. USSR Izv. 33 (1989), No. 1, 1–37.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. V. Babin, Dynamics of spatially chaotic solutions of parabolic equations. (Russian)Sb. Math. 186 (1995), No. 10, 1389–1415.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Barré, Plyedres finis de dimension 2 à courbure ≤2 et de rang 2.Ann. Inst. Fourier 45 (1995), 1037–1059.MATHGoogle Scholar
  10. 10.
    S. Barré, Polyèdres de rang 2.Thèse, ENS de Lyon, 1996.Google Scholar
  11. 11.
    L. Bartholdi, Growth series of groups.Univ. de Genève, 1996. (to appear).Google Scholar
  12. 12.
    L. Bartholdi, S. Cantat, T. Ceccherini Silberstein, and P. de la Harpe, Estimates for simple random walks on fundamental groups of surfaces.Colloquium Math. (to appear).Google Scholar
  13. 13.
    H. Bass, The degree of polynomial growth of finitely generated nilpotent groups.Proc. London Math. Soc. 25 (1972), 603–614.MATHMathSciNetGoogle Scholar
  14. 14.
    B. Baumslag and S. J. Pride, Groups with two more generators than relators.J. London Math. Soc. 17 (1978), 425–426.MATHMathSciNetGoogle Scholar
  15. 15.
    —, Groups with one more generator than relators.Math. Z. 167 (1979), 279–281.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups.Bull. Am. Math. Soc. 68 (1962), 199–201.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Baumslag, Topics in combinatorial group theory.Birkhäuser, 1993.Google Scholar
  18. 18.
    T. Becker and V. Weispfenning, Gröbner bases, a computational approach to commutative algebra.Springer, 1993.Google Scholar
  19. 19.
    M. Benson, Growth series of finite extensions of ℤn are rational.Inv. Math. 73 (1983), 251–269.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Benson, On the rational growth of virtually nilpotent groups. In: Combinatorial Group Theory and Topology, S. M. Gersten and J. R. Stallings, Eds.,Ann. Math. Stud., Vol. 111,Princeton Univ. Press, 1987, 185–196.Google Scholar
  21. 21.
    G. Besson, G. Courtois, and S. Gallot, Minimal entropy and Mostow's rigidity theorems.Ergod. Theory and Dynam. Syst. 16 (1996), 623–649.MATHMathSciNetGoogle Scholar
  22. 22.
    N. Billington, Growth of groups and graded algebras: Erratum.Commun. Algebra 13 (1985), No. 3, 753–755.MATHMathSciNetGoogle Scholar
  23. 23.
    —, Growth series of central amalgamations.Commun. Algebra 21 (1993), No. 2, 371–397.MATHMathSciNetGoogle Scholar
  24. 24.
    J.-C. Birget, E. Rips, and M. Sapir, Dehn functions of groups.Preprint, 1996.Google Scholar
  25. 25.
    O. V. Bogopolski, Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent.Preprint, Bochum and Novosibirsk, August 1996.Google Scholar
  26. 26.
    N. Bourbaki, Groupes et algèbres de Lie. Chs. 4–5–6.Hermann 1968.Google Scholar
  27. 27.
    M. Brazil, Growth functions for some nonautomatic Baumslag-Solitar groups.Trans. Am. Math. Soc. 342 (1994), 137–154.MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. W. Cannon, The growth of the closed surface groups and compact hyperbolic Coxeter groups.Circulated typescript, Univ. Wisconsin, 1980.Google Scholar
  29. 29.
    —, The combinatorial structure of cocompact discrete hyperbolic groups.Geom. Dedic. 16 (1984), 123–148.MATHMathSciNetGoogle Scholar
  30. 30.
    J. W. Cannon, W. J. Floyd and W. R. Parry, Notes on Richard Thompson's groups.l'Enseignement Math. (to appear).Google Scholar
  31. 31.
    J. W. Cannon and Ph. Wagreich, Growth functions of surface groups.Math. Ann. 293 (1992), 239–257.MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    C. Champetier, Cocroissance des groupes à petite simplification.Bull. London Math. Soc. (to appear).Google Scholar
  33. 33.
    B. Chandler and W. Magnus, The history of combinatorial group theory: A case study in the history of ideas.Springer, 1982.Google Scholar
  34. 34.
    P. A. Cherix and A. Valette, On spectra of simple random walks on one-relator groups.Pacif. J. Math. (to appear).Google Scholar
  35. 35.
    T. Ceccherini Silberstein and R. Grigorchuck, Amenability and growth of one-relator groups.Preprint, Univ. de Genève, 1996.Google Scholar
  36. 36.
    I. Chiswell, The growth series of HNN-extensions.Commun. Algebra 22 (1994), No. 8, 2969–2981.MATHMathSciNetGoogle Scholar
  37. 37.
    J. M. Cohen, Cogrowth and amenability of discrete groups.J. Funct. Anal. 48 (1982), 301–309.MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Y. Colin de Verdière, Spectres de graphes.Prépublication, Grenoble, 1995.Google Scholar
  39. 39.
    D. J. Collins, M. Edjvet, and C. P. Gill, Growth series for the group (x, y|x −1 yx=y l).Arch. Math. 62 (1994), 1–11.MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    D. Cooper, D. D. Long, and A. W. Reid, Infinite Coxeter groups are virtually indicable.Univ. California, Santa Barbara;and Univ. Texas, Austin, 1996.Google Scholar
  41. 41.
    M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov.Pacif. J. Math. 159 (1993), 241–270.MATHMathSciNetGoogle Scholar
  42. 42.
    M. Coornaert and A. Papadopoulos, Sur le bas du spectre des graphes réguliers.Preprint Strasbourg.Google Scholar
  43. 43.
    M. M. Day, Amenable semi-groups.Ill. J. Math. 1 (1957), 509–544.MATHMathSciNetGoogle Scholar
  44. 44.
    T. Delzant, Sous-groupes distingués et quotients des groupes hyperboliques.Duke Math. J. 83 (1996), 661–682.MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    W. A. Deuber, M. Simonovitz, and V. T. Sós, A note on paradoxical metric spaces.Studia Sci. Math. Hung. 30 (1995), 17–23.MATHGoogle Scholar
  46. 46.
    J. Dodziuk and L. Karp, Spectra and function theory for combinatorial Laplacians.Contemp. Math. 73 (1988), 25–40.MATHMathSciNetGoogle Scholar
  47. 47.
    P. G. Doyle and J. L. Snell, Random walks and electric networks.Math. Assoc. Am. (1984).Google Scholar
  48. 48.
    L. van den Dries and A. J. Wilkie, On Gromov's theorem concerning groups of polynomial growth and elementary logic.J. Algebra 89 (1984), 349–374.MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    —, An effective bound for groups of linear growth.Arch. Math. 42 (1984), 391–396.MATHCrossRefGoogle Scholar
  50. 50.
    M. Edjvet and D. L. Johnson, The growth of certain amalgamated free products and HNN-extensions.J. Austral. Math. Soc. 52 (1992), No. 3, 285–298.MATHMathSciNetGoogle Scholar
  51. 51.
    J. Eells, Random walk on the fundamental group. In: Differential Geometry.Proc. Sympos. Pure Math., 1973 XXVII, Part 2,Am. Math. Soc. (1975), 211–217.Google Scholar
  52. 52.
    V. A. Efremovic, The proximity geometry of Riemannian manifolds. (Russian)Uspekhi Mat. Nauk 8 (1953), 189.Google Scholar
  53. 53.
    S. Eilenberg and M. P. Schützenberger, Rational sets in commutative monoids.J. Algebra 13 (1969), 173–191.MATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston, Word processing in groups.Jones and Bartlett, 1992.Google Scholar
  55. 55.
    P. Fatou, Séries trigonométriques et séries de Taylor.Acta Math. 30 (1906), 335–400.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    W. Floyd, Growth of planar Coxeter groups, PV numbers, and Salem numbers.Math. Ann. 293 (1992), 475–483.MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    —, Symmetries of planar growth functions, II.Trans. Am. Math. Soc. 340 (1993), 447–502.MATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    W. Floyd and S. Plotnick, Growth functions on Fuchsian groups and the Euler characteristic.Inv. Math. 88 (1987), 1–29.MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    —, Symmetries of planar growth functions.Inv. Math. 93 (1988), 501–543.MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    E. Folner, On groups with full Banach mean value.Math. Scand. 3 (1955), 243–254.MathSciNetGoogle Scholar
  61. 61.
    E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d'après Gromov.Birkhäuser, 1990.Google Scholar
  62. 62.
    F. R. Gantmacher, The theory of matrices, volume two.Chelsea Publ. Comp., 1960.Google Scholar
  63. 63.
    C. Gonciulea, Infinite Coxeter groups virtually surject onto ℤPreprint, Ohio State Unive., 1996.Google Scholar
  64. 64.
    F. Goodman, P. de la Harpe, and V. Jones, Coxeter graphs and towers of algebras.Publ. MSRI, Vol. 62,Springer, 1989.Google Scholar
  65. 65.
    R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics.Addison-Wesley, 1991.Google Scholar
  66. 66.
    R. I. Grigorchuk, Banach invariant means on homogenous spaces and random walks. (Russian)Thesis, 1978.Google Scholar
  67. 67.
    —, Invariant measures on homogeneous spaces. (Russian)Ukr. Mat. Zh. 31 (1979), No. 5, 490–497, 618.MATHMathSciNetGoogle Scholar
  68. 68.
    R. I. Grigorchuk, Symmetrical random walks on discrete groups. In: Multicomponent Random Systems, R. L. Dobrushin. Ya. G. Sinai, and D. Griffeath, Eds.,Adv. Probab. and Related Topics, Vol. 6,Dekker, 1980, 285–325.Google Scholar
  69. 69.
    —, On Milnor's problem of group growth.Sov. Math. Dokl. 28 (1983), No. 1, 23–26.MATHGoogle Scholar
  70. 70.
    —, A connection between algorithmic problems and entropy characteristics of groups.Sov. Math. Dokl. 32 (1985), No. 2, 356–360.MathSciNetGoogle Scholar
  71. 71.
    —, The growth degrees of finitely generated groups and the theory of invariant means.Math. USSR Izv. 25 (1985), 259–300.MATHCrossRefGoogle Scholar
  72. 72.
    —, On the growth degrees ofp-groups and torsion-free groups.Math. USSR Sb. 54 (1986), 185–205.MATHCrossRefGoogle Scholar
  73. 73.
    —, Semigroups with cancellations of power degree growth. (Russian)Mat. Zametki 43 (1988), No. 3-4, 175–183.MATHMathSciNetGoogle Scholar
  74. 74.
    R. I. Grigorchuk, On growth in group theory.Proc. ICM Kyoto, 1990, Vol. 1,Springer, 1991, 325–338.Google Scholar
  75. 75.
    —, Growth functions, rewriting systems, Euler characteristic.Mat. Zametki 58 (1995), No. 5, 653–668.MATHMathSciNetGoogle Scholar
  76. 76.
    —, Weight functions on groups and criteria of amenability of Beurling algebras. (Russian)Mat. Zametki 60 (1996), No. 3, 370–382.MATHMathSciNetGoogle Scholar
  77. 77.
    R. I. Grigorchuk, Ergodic theorems for noncommutative groups.Preprint, 1996.Google Scholar
  78. 78.
    R. I. Grigorchuk and P. F. Kurchanov, Some questions of group theory related to geometry. In: Algebra VII, A. N. Parshin and I. R. Shafarevich, Eds.,Springer, 1993, 167–232.Google Scholar
  79. 79.
    R. I. Grigorchuk and M. J. Mamaghani, On use of iterates of endomorphisms for constructing groups with specific properties.preprint, Univ. Teheran, 1996.Google Scholar
  80. 80.
    R. I. Grigorchuk and T. Nagnibeda, Complete growth functions of hyperbolic groups. (To appear in:Inv. Math.)Google Scholar
  81. 81.
    M. Gromov, J. Lafontaine, and P. Pansu, Structures métriques pour les variétés riemanniennes.Cedic./F. Nathan, 1981.Google Scholar
  82. 82.
    M. Gromov, Groups of polynomial growth and expanding maps.Publ. Math. IHES. 53 (1981), 57–78.Google Scholar
  83. 83.
    —, Volume and bounded cohomology.Publ. Math. IHES 56 (1982), 5–100.MATHMathSciNetGoogle Scholar
  84. 84.
    M. Gromov, Hyperbolic groups. In: Essays in Group Theory, S. M. Gerstern ed.,MSRI Publ, Vol. 8,Springer, 1987, 75–263.Google Scholar
  85. 85.
    M. Gromov, Asymptotic invariants of infinite groups. In: Geometry Group Theory, Sussex, 1991, G. A. Niblo and M. A. Roller, Eds., Vol. 2,Cambridge Univ. Press, 1993.Google Scholar
  86. 86.
    V. S. Guba, A finitely generated simple group with free 2-generated subgroups. (Russian)Siberian Math. J. 27 (1986), 670–684.MATHMathSciNetCrossRefGoogle Scholar
  87. 87.
    L. Guillopé, Entropies et spectres.Osaka J. Math.,31 (1994), 247–289.MATHMathSciNetGoogle Scholar
  88. 88.
    Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques.Bull. Soc. Math. France 101 (1973), 333–379.MATHMathSciNetGoogle Scholar
  89. 89.
    P. de la Harpe, Topics on geometric group theory.Lect. Notes, Univ. de Genève, 1995/1996.Google Scholar
  90. 90.
    T. E. Harris, Transient Markov chains with stationary measures.Proc. Am. Math. Soc. 8 (1957), 937–942.MATHCrossRefGoogle Scholar
  91. 91.
    G. Hector and U. Hirsch, Introduction to the geometry of foliations. Parts A and B,Vieweg, 1981, 1983.Google Scholar
  92. 92.
    K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida, From Gauss to Painlevé. A modern theory of special functions.Vieweg, 1991.Google Scholar
  93. 93.
    D. L. Johnson, Rational growth of wreath products. In: Group St-Andrews 1989, Vol. 2,London Math. Soc. Lect. Notes Ser. 160 (1991), 309–315.Google Scholar
  94. 94.
    D. L. Johnson and H. J. Song, The growth series of the Gieseking group. In: Discrete Groups and Geometry, W. J. Harvey and C. Maclachlan, Eds.,Cambridge Univ. Press, 1992, 120–124.Google Scholar
  95. 95.
    D. L. Johnson and H. J. Song, The growth of torus knot groups. (to appear).Google Scholar
  96. 96.
    V. F. R. Jones, Index for subrings of rings.Contemp. Math. Am. Math. Soc. 43 (1985), 181–190.MATHGoogle Scholar
  97. 97.
    V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy.Ann. Probab. 11 (1983), 457–490.MATHMathSciNetGoogle Scholar
  98. 98.
    W. M. Kantor, Some topics in asymptotic group theory. In: Groups, Combinatorics and Geometry, M. W. Liebeck and J. Saxl, Eds.,Cambridge Univ Press (1992), 403–421.Google Scholar
  99. 99.
    H. Kesten, Symmetric random walks on groups.Trans. Am. Math. Soc. 92 (1959), 336–354.MATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    —, Full Banach mean values on countable groups.Math. Scand. 7 (1959), 146–156.MATHMathSciNetGoogle Scholar
  101. 101.
    E. Kirchberg and G. Vaillant, On C*-algebras having linear, polynomial and subexponential growth.Inv. Math. 108 (1992), 635–652.MATHMathSciNetCrossRefGoogle Scholar
  102. 102.
    A. A. Kirillov, Dynamical systems, factors and representations of groups.Russian Math. Surv. 22 (1967), No. 5, 63–75.MATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    D. A. Klarner, Mathematical crystal growth. I.Discrete Appl. Math. 3 (1981), 47–52.MATHMathSciNetCrossRefGoogle Scholar
  104. 104.
    —, Mathematical crystal growth. II.Discrete Appl. Math. 3 (1981), 113–117.MATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    A. I. Kostrikin and Yu. I. Manin, Linear algebra and geometry.Gordon and Breach, 1989.Google Scholar
  106. 106.
    M. Koubi, Sur la croissance dans les groupes libres.Prépublication, Toulouse, 1996.Google Scholar
  107. 107.
    V. D. Mazurov and E. I. Khukhro, Eds., Unsolved problems in group theory. The Kourovka notebook, thirteenth aumented edition.Russ. Acad. Sci., Siberian Dept., Novosibirsk, 1995.MATHGoogle Scholar
  108. 108.
    G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension.Research Notes Math., Vol. 116,Pitman, 1985.Google Scholar
  109. 109.
    J. Lewin, The growth function of a graph group.Commun. Algebra 17 (1989), No. 5, 1187–1191.MATHMathSciNetGoogle Scholar
  110. 110.
    —, The growth function of some free products of groups.Commun. Algebra 19 (1991), No. 9, 2405–2418.MATHMathSciNetGoogle Scholar
  111. 111.
    F. Liardet, Croissance dans les groupes virtuellement éliens.Thèse, Univ. de Genève, 1996.Google Scholar
  112. 112.
    A. Lubotzky and A. Mann, On groups of polynomial subgroup growth.Inv. Math. 104 (1991), 521–533.MATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    A. Lubotzky, Counting finite index subgroups. In: Groups' 93 Galway, St Andrews, Vol. 2, C. M. Campbell et al., Eds.,Cambridge Univ. Press, 1995, 368–404.Google Scholar
  114. 114.
    A. Lubotzky, Subgroup growth.Proc. ICM Zürich, 1994, Vol. 1,Birkhäuser, 1995, 309–317.Google Scholar
  115. 115.
    —, Free quotients and the first Betti number of some hyperbolic manifolds.Transformation groups 1 (1996), 71–82.MATHMathSciNetGoogle Scholar
  116. 116.
    A. Lubotzky, A. Mann, and D. Segal, Finitely generated groups of polynomial subgroup growth.Israel J. Math. 82 (1993),363–371.MATHMathSciNetGoogle Scholar
  117. 117.
    A. Lubotzky, S. Mozes, and M. S. Raghunathan, Cyclic subgroups of exponential growth and metrics on discrete groups.C. R. Acad. Sci. Paris, Sér. I317 (1993), 736–740.MathSciNetGoogle Scholar
  118. 118.
    R. Lyndon, Problems in combinatorial group theory. In: Combinatorial Group Theory and Topology, S. M. Gersten and J. R. Stallings, Eds,Ann. Math. Stud., Vol. 111,Princeton Univ. Press, 1987, 3–33.Google Scholar
  119. 119.
    R. C. Lyndon and P. E. Schupp, Combinatorial group theory.Springer, 1977.Google Scholar
  120. 120.
    A. Machì, Growth functions and growth matrices for finitely generated groups.Unpublished manuscript, Univ. di Roma La Sapienza, 1986.Google Scholar
  121. 121.
    A. Machì and F. Mignosi, Garden of Eden configurations for cellular automata on Cayley graphs of groups.SIAM J. Disc. Math.,6 (1993), No. 1, 44–56.MATHCrossRefGoogle Scholar
  122. 122.
    W. Magnus, A. Karras, and D. Solitar, Combinatorial group theory.J. Wiley, 1966.Google Scholar
  123. 123.
    A. Manning, Topological entropy for geodesic flows.Ann. Math. 110 (1979), 567–573.MATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    J. Milnor, Problem 5603.Am. Math. Monthly 75 (1968), No. 6, 685–686.MathSciNetGoogle Scholar
  125. 125.
    —, A note on the fundamental group.J. Differ. Geom. 2 (1968), 1–7.MATHMathSciNetGoogle Scholar
  126. 126.
    —, Growth of finitely generated solvable groups.J. Differ. Geom. 2 (1968), 447–449.MATHMathSciNetGoogle Scholar
  127. 127.
    G. Moussong, Hyperbolic Coxeter groups.Thesis, Ohio State Univ., 1988.Google Scholar
  128. 128.
    T. Nagnibeda, An estimate from above of spectral radii of random walks on surface groups. (Russian)Zapiski Nauchn. Semin. POMI (to appear).Google Scholar
  129. 129.
    W. D. Neumann and M. Shapiro, Automatic structures, rational growth, and geometrically finite hyperbolic groups.Inv. Math. 120 (1995), 259–287.MATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    J. von Neumann, Zur allgemeinen Theorie des Masses.Fund. Math. 13 (1929), 73–116.MATHGoogle Scholar
  131. 131.
    A. Nevo and Y. Shalom, Explicit Kazhdan constants for representations of semi-simple groups and their lattices.Preprint, Haifa and Jerusalem, 1996.Google Scholar
  132. 132.
    S. Northshield, Cogrowth of regular graphs.Proc. Am. Math. Soc. 116 (1992), 203–205.MATHMathSciNetCrossRefGoogle Scholar
  133. 133.
    A.Ju. Ol'shanskii, On the problem of the existence of an invariant mean on a group.Russ. Math. Surv. 35 (1980), No. 4, 180–181.MATHMathSciNetCrossRefGoogle Scholar
  134. 134.
    P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés.Ergod. Theory. and Dynam. Syst. 3 (1983), 415–445.MATHMathSciNetGoogle Scholar
  135. 135.
    L. Paris, Growth series of Coxeter groups. In: Group Theory from a Geometrical Viewpoint, E. Ghys, A. Haefliger, and A. Verjovsky, Eds,World Scientific, 1991, 302–310.Google Scholar
  136. 136.
    —, Complex growth series of Coxeter systems.l'Enseignement math. 38 (1992), 95–102.MATHMathSciNetGoogle Scholar
  137. 137.
    W. Parry, Counter-examples involving growth series and Euler characteristics.Proc. Am. Math. Soc. 102 (1988), 49–51.MATHMathSciNetCrossRefGoogle Scholar
  138. 138.
    —, Growth series of some wreath products.Trans. Am. Math. Soc. 331 (1992), 751–759.MATHMathSciNetCrossRefGoogle Scholar
  139. 139.
    —, Growth series of Coxeter groups and Salem numbers.J. Algebra 154 (1993), 406–415.MATHMathSciNetCrossRefGoogle Scholar
  140. 140.
    W. B. Paschke, Lower bound for the norm of a vertex-transitive graph.Math. Zeit. 213 (1993), 225–239.MATHMathSciNetCrossRefGoogle Scholar
  141. 141.
    M. Pollicott and R. Sharp, Growth series for the commutator subgroup.Proc. Am. Math. Soc. (1996), 1329–1335.Google Scholar
  142. 142.
    G. Polya and G. Szego, Problems and theorems in analysis. Vols. I and II.Springer, 1972, 1976.Google Scholar
  143. 143.
    W. E. Pruitt, Eigenvalues of non-negative matrices.Ann. Math. Stat. 35 (1964), 1797–1800.MATHMathSciNetGoogle Scholar
  144. 144.
    E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups.Geom. and Funct. Anal. 4 (1994), 337–371.MATHMathSciNetCrossRefGoogle Scholar
  145. 145.
    G. Robert, Entropie et graphes.Preprint, École Normale Supérieure de Lyon, Jan. 1996.Google Scholar
  146. 146.
    G. Rozenberg and A. Salomaa, The mathematical theory ofL systems.Acad. Press, 1980.Google Scholar
  147. 147.
    A. Rosenmann, Cogrowth and essentiality in groups and algebras. In: Combinatorial and Geometric Group Theory, Edinburgh, 1993, A.J. Duncan, N.D. Gilbert, and J. Howie, Eds.,Cambridge Univ. Press, 1995, 284–293.Google Scholar
  148. 148.
    A. Rosenmann, The normalized cyclomatic quotient associated with presentations of finitely generated groups.Israel J. Math. (to appear).Google Scholar
  149. 149.
    S. Rosset, A property of groups of nonexponential growth.Proc. Am. Math. Soc. 54 (1976), 24–26.MATHMathSciNetCrossRefGoogle Scholar
  150. 150.
    A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series.Springer, 1978.Google Scholar
  151. 151.
    A. S. Schwarts, Volume invariants of coverings. (Russian)Dokl. Akad. Nauk. 105 (1955), 32–34.Google Scholar
  152. 152.
    J-P. Serre, Cohomologie des groupes discrets. In: Prospects in Mathematics,Ann. Math. Stud., Vol. 70,Princeton Univ. Press, 1971, 77–169.Google Scholar
  153. 153.
    P. B. Shalen and P. Wagreich, Growth rates, ℤp-homology, and volumes of hyperbolic 3-manifolds.Trans. Am. Math. Soc. 331 (1992), 895–917.MATHMathSciNetCrossRefGoogle Scholar
  154. 154.
    Y. Shalom, The growth of linear groups.Preprint, Jerusalem, 1996.Google Scholar
  155. 155.
    M. Shapiro, A geometric approach to the almost convexity and growth of some nilpotent groups.Math. Ann. 285 (1989), 601–624.MATHMathSciNetCrossRefGoogle Scholar
  156. 156.
    —, Growth of a PSL2ℝ manifold group.Math. Nachr. 167 (1994), 279–312.MATHMathSciNetCrossRefGoogle Scholar
  157. 157.
    L. M. Shneerson and D. Easdown, Growth and existence of identities in a class of finitely presented inverse semigroups with zero.Int. J. Algebra Comput. 6 (1996), 105–120.MATHMathSciNetCrossRefGoogle Scholar
  158. 158.
    M. A. Shubin, Pseudodifference operators and their Green's functions.Math. USSR Izv. 26 (1986), No. 3, 605–622.MATHCrossRefGoogle Scholar
  159. 159.
    N. Smythe, Growth functions and Euler series.Inv. Math. 77 (1984), 517–531.MATHMathSciNetCrossRefGoogle Scholar
  160. 160.
    L. Solomon, The orders of the finite Chevalley groups.J. Algebra 3 (1966), 376–393.MATHMathSciNetCrossRefGoogle Scholar
  161. 161.
    R. Stöhr, Groups with one more generator than relators.Math. Z. 182 (1983), 45–47.MATHMathSciNetCrossRefGoogle Scholar
  162. 162.
    M. Stoll, Regular geodesic languages for 2-step nilpotent groups. In: Combinatorial and geometric group theory, Edinburgh 1993, A.J. Duncan, N.D. Gilbert, and J. Howie, Eds.,Cambridge Univ. Press, 1995, 294–299.Google Scholar
  163. 163.
    M. Stoll, On the asymptotics of the growth of 2-step nilpotent groups.J. London Math. Soc. (1996) (to appear).Google Scholar
  164. 164.
    M. Stoll, Some group presentations with rational growth.Preprint, Bonn, February 28, 1995.Google Scholar
  165. 165.
    —, Rational and transcendental growth series for the higher Heisenberg groups.Inv. Math. 126 (1996), 85–109.MATHMathSciNetCrossRefGoogle Scholar
  166. 166.
    G. Stuck, Growth of homogeneous spaces, density of discrete subgroups and Kazhdan's property (T).Inv. Math. 109 (1992), 505–517.MATHMathSciNetCrossRefGoogle Scholar
  167. 167.
    B. Sturmfels, Algorithms in invariant theory.Springer, 1993.Google Scholar
  168. 168.
    R. Szwarc, A short proof of the Grigorchuk-Cohen cogrowth theorem.Proc. Am. Math. Soc. 106 (1989), 663–665.MATHMathSciNetCrossRefGoogle Scholar
  169. 169.
    J. Tits, Free Subgroups in Linear Groups.J. Algebra 20 (1979), 250–270.MathSciNetCrossRefGoogle Scholar
  170. 170.
    J. Tits, Groupes à croissance polynomiale.Sémin. Bourbaki 572, Feb. 1981.Google Scholar
  171. 171.
    V. I. Trofimov, Graphs with polynomial growth.Math. USSR Sb. 51 (1985), 405–407.MATHCrossRefGoogle Scholar
  172. 172.
    V. A. Ufnarovskij, Combinatorial and asymptotic methods in algebra. In: Algebra VI, A.I. Kostrikin, and I. R. Shafarevich, Eds.,Springer, 1995, 1–196.Google Scholar
  173. 173.
    N. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups.Cambridge Univ. Press, 1992.Google Scholar
  174. 174.
    P. Wagreich, The growth series of discrete groups. In: Proc. Conference on Algebraic Varieties with Group Actions.Springer, Lect. Notes Ser. 956 (1982), 125–144.Google Scholar
  175. 175.
    B. Weber, Zur Rationalität polynomialer Wachstumsfunktionen.Bonner Math. Schriften 197, 1989.Google Scholar
  176. 176.
    H. S. Wilf, Generatingfunctionology.Academic Press, 1990.Google Scholar
  177. 177.
    W. Woess, Cogrowth of groups and simple random walks.Arch. Math. 41 (1983), 363–370.MATHMathSciNetCrossRefGoogle Scholar
  178. 178.
    —, Context-free languages and random walks on groups.Discrete math. 67 (1987), 81–87.MATHMathSciNetCrossRefGoogle Scholar
  179. 179.
    —, Random walks on infinite graphs and groups. A survey on selected topics.Bull. London Math. Soc. 26 (1994), 1–60.MATHMathSciNetGoogle Scholar
  180. 180.
    J. A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds.J. Differ. Geom. 2 (1968), 421–446.MATHGoogle Scholar
  181. 181.
    A. Zuk, A remark on the norm of a random walk on surface groups.Colloq. Math. (to appear).Google Scholar
  182. 182.
    A. Zuk, On the norms of the random walks on planar graphs.Colloq. Math. (to appear).Google Scholar
  183. 183.
    T. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés.Rev. Mat. Iberoam. 9 (1993), 293–314.MATHMathSciNetGoogle Scholar
  184. 184.
    P. de la Harpe, G. Robertson, and A. Valette, On the spectrum of the sum of generators for a finitely generated group.Israel J. Math. 81 (1993), 65–96.MATHMathSciNetGoogle Scholar
  185. 185.
    —, On the spectrum of the sum of generators for a finitely generated group. Part II.Colloq. Math. 65 (1993), 87–102.MATHMathSciNetGoogle Scholar
  186. 186.
    M. Boyle, D. Lind, and D. Rudolph, The automorphism group of a shift of finite type.Trans. Am. Math. Soc. 306 (1988), 71–114.MATHMathSciNetCrossRefGoogle Scholar
  187. 187.
    P. Cameron, Infinite permutation groups in enumeration and model theory.Proc. ICM Kyoto, Vol. II, 1990,Springer, 1991, 1431–1441.Google Scholar
  188. 188.
    A. Erfanian and J. Wiegold, A note on growth sequences of finite simple groups.Bull. Austral. Math. Soc. 51 (1995), 495–499.MATHMathSciNetGoogle Scholar
  189. 189.
    G. Pollak, Growth sequence of globally idempotents semigroups.J. Austral. Math. Soc., Ser. A48 (1990), 87–88.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. Grigorchuk
    • 1
  • P. De La Harpe
    • 2
  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.Section de MathématiquesUniversité de Genève, C.P. 240GenèveSuisse

Personalised recommendations