Journal of Anesthesia

, Volume 10, Issue 3, pp 211–217 | Cite as

Immunocytochemical study of parvalbumin, calbindin D-28k, and calretinin in the superficial dorsal horn of the rat spinal cord following unilateral hindpaw inflammation

  • Yoko Mineta
  • Hiroshi Koyanagi
  • Masatoshi Morimoto
  • Kiyoshi Harano
  • Tadahide Totoki
  • David M. Jacobowitz
Original Articles

Abstract

The effect of noxious stimulation on the immunore-activity of the calcium-binding proteins parvalbumin (PV), calbindin-D-28k (CB) and calretinin (CR) was investigated in the superficial dorsal horn of lumbar levels L5-L3 of the rat spinal cord. Freund's adjuvant was injected unilaterally into the hindpaw to induce inflammation. Immunohistochemical techniques were utilized to investigate changes in the calcium-binding proteins 2h and 1, 2, 4, and 7 days after injection. At 24h after injection, a decrease in the intensity of fluorescence of PV-immunoreactive (IR) fibers was observed in the superficial layer (substantia gelatinosa) of the ipsilateral dorsal horn (L5-L3) in most animals. Comparatively fewer animals exhibited changes in the CB- and CR-IR fibers, except at the L3 level 2 days after, and at the L4 level 7 days after the hindpaw injection. After the peak response, at 24h in most animals, there was a decline in the number of responders at 2 days and no differences were noted at 4 days. However, at 7 days, there was again an increase in the number of animals revealing diminished fluorescence intensity in the ipsilateral substantia gelatinosa. Changes in immunoreactivity of calcium binding proteins in the interneurons of the superficial lumbar dorsal horn may reflect hyperactivity within these neurons following noxious stimulation.

Key words

Parvalbumin Calbindin D-28k Calretinin Spinal cord Immunohistochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heizmann CW (1993) Calcium signaling in the brain. Acta Neurobiol Exp 53:15–23Google Scholar
  2. 2.
    Neher E (1992) Controls on calcium influx. Nature 355:298–299PubMedCrossRefGoogle Scholar
  3. 3.
    Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. TINS 15:303–308PubMedGoogle Scholar
  4. 4.
    Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin and calbindin-D28k immunoreactive neurons in the rat spinal cord and dorsal root ganglia: A light and electron microscopic study. J Comp Neurol 295:467–484PubMedCrossRefGoogle Scholar
  5. 5.
    Fournet N, Garcia-Segura LM, Norman AW, Orci L (1986) Selective localization of calcium-binding protein in human brainstem, cerebellum and spinal cord. Brain Res 399:310–316PubMedCrossRefGoogle Scholar
  6. 6.
    Ren K, Ruda MA (1995) A comparative study of the calcium binding proteins calbindin-D28k, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Rev 19:163–179CrossRefGoogle Scholar
  7. 7.
    Ren K, Ruda MA, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Res Bull 31:13–22PubMedCrossRefGoogle Scholar
  8. 8.
    Yamamoto T, Carr PA, Baimbridge KG, Nagy JI (1989) Parvalbumin and calbindin-D28k immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of the rat. Brain Res Bull 23:493–508PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshida S, Senba E, Kubota Y, Hagihira S, Yoshiya I, Emson PC, Tohyama M (1990) Calcium-binding proteins calbindin and parvalbumin in the superficial dorsal horn of the rat spinal cord. Neuroscience 37:839–848PubMedCrossRefGoogle Scholar
  10. 10.
    Grant G (1993) Projection patterns of primary sensory neurons studies by transganglionic methods: Somatotopy and targetrelated organization. Brain Res Bull 30:199–208PubMedCrossRefGoogle Scholar
  11. 11.
    Molander C, Grant G (1985) Cutaneous projections from the rat hindlimb foot to the substantia gelatinosa of the spinal cord studied by transganglionic transport of WGA-HRP conjugate. J Comp Neurol 237:476–484PubMedCrossRefGoogle Scholar
  12. 12.
    Zimmerman M (1983) Ethical guidelines for investigation of experimental pain in conscious animals. Pain 16:109–110CrossRefGoogle Scholar
  13. 13.
    Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141PubMedCrossRefGoogle Scholar
  14. 14.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  15. 15.
    Winsky L, Nakata H, Martin BM, Jacobowitz DM (1989) Isolation, partial amino acid sequence and immunohistochemical localization of a brain-specific calcium-binding protein. Proc Natl Acad Sci USA 86:139–10143.CrossRefGoogle Scholar
  16. 16.
    Fitzgerald M, Sweet JE (1983) The termination pattern of sciatic afferents in the substantia gelatinosa of neonatal rats. Neurosci Lett 43:149–154PubMedCrossRefGoogle Scholar
  17. 17.
    Robertson B, Grant G (1985) A comparison between wheat germ agglutinin and choleragenoid-horseradish peroxidase as anterograde transport markers in central branches of primary sensory neurons in the rat with some observations in the cat. Neuroscience 14:895–905PubMedCrossRefGoogle Scholar
  18. 18.
    Smith CL (1983) The development and postnatal organization of primary afferent projections to the thoracic spinal cord. J Comp Neurol 220:29–43PubMedCrossRefGoogle Scholar
  19. 19.
    Molander C, Grant G (1986) Laminar distribution and somatotopic organization of primary afferent fibers from hindlimb nerves in the dorsal horn. A study by transganglionic transport of horseradish peroxidase in the rat. Neuroscience 19:297–312PubMedCrossRefGoogle Scholar
  20. 20.
    Rivero-Melian C, Grant G (1991) Choleragenoid horseradish peroxidase used for studying projections of some hindlimb cutaneous nerves and plantar foot afferent to the dorsal horn and Clark's column in the rat. Exp Brain Res 84:125–132PubMedGoogle Scholar
  21. 21.
    Swett JE, Woolf CJ (1985) The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J Comp Neurol 231:66–77PubMedCrossRefGoogle Scholar
  22. 22.
    Ueyama T, Arakawa H, Mizuno N (1987) Central distribution of efferent and afferent components of the pudendal nerve in the rat. Anat Embryo 177:37–49CrossRefGoogle Scholar
  23. 23.
    Woolf CJ, Fitzgerald M (1986) Somatotopic organization of cutaneous afferent terminals dorsal horn neuronal receptive fields in the superficial and deep laminae of the rat lumbar spinal cord. J Comp Neurol 251:517–531PubMedCrossRefGoogle Scholar
  24. 24.
    Ygge J, Grant G (1983) The organization of the thoracic spinal nerve projection in the rat dorsal horn demonstrated with transganglion transport of horseradish peroxidase. J Comp Neurol 216:1–9PubMedCrossRefGoogle Scholar
  25. 25.
    Presley RW, Menétrey D, Levine JD, Basbaum AI (1990) Systemic morphine suppresses noxious stimulus-evoked fos protein-like immunoreactivity in the rat spinal cord. J Neurosci 10: 323–335PubMedGoogle Scholar
  26. 26.
    Draisci G, Iadarola MJ (1989) Temporal analysis of increases in c-fos, preprodynorphin and preproenkephalin mRNAs in rat spinal cord. Mol Brain Res 6:31–37PubMedCrossRefGoogle Scholar
  27. 27.
    Iadarola MJ, Brady LS, Draisci G, Dubner R (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: Stimulus specificity behavioral parameters and opioid receptor binding. Pain 35:13–326CrossRefGoogle Scholar
  28. 28.
    Iadarola MJ, Douglass, J, Civelli O, Naranjo JR (1988) Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: Evidence using cDNA hybridization. Brain Res 455:205–212PubMedCrossRefGoogle Scholar
  29. 29.
    Millan MJ, Millan MH, Czlonkowski A, Höllt V, Picher CWT, Hertz A, Colpaert FC (1986) A model of chronic pain in the rat: Response of opioid systems to adjuvant-induced arthritis. J Neurosci 6:899–906.PubMedGoogle Scholar
  30. 30.
    Chavkin C, Goldstein A (1981) Dynorphin is a specific endogenous ligand of the k-opioid receptor. Science 215:413–415Google Scholar
  31. 31.
    Law PY, Hom DS, Loh HH (1982) Loss of opiate receptor activity in neuroblastoma X glioma NG 108-15 hybrid cells after chronic opiate treatment. Mol Pharmacol 22:1–4PubMedGoogle Scholar
  32. 32.
    Strang PF, Potter JD (1992) A monoclonal antibody that recognizes different conformational status of skeletal muscle troponin C and other calcium binding proteins. J Muscle Res Cell Motil 13: 308–314PubMedCrossRefGoogle Scholar
  33. 33.
    Winsky L, Kuznick J (1994) Evidence for calcium-dependent antibody recognition of calcium binding proteins. Soc Neurosci Abstract: 20Google Scholar
  34. 34.
    Johansen FF, Tønder N, Zimmer J, Baimbridge KG, Diemer NH (1990) Short-term changes of parvalbumin and calbindin immunoreactivity in the rat hippocampus following cerebral ischemia. Neurosci Lett 120:171–174PubMedCrossRefGoogle Scholar
  35. 35.
    Nitsch C, Scotti A, Sommacal A, Kalt G (1989) GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2+-binding protein parvalbumin. Neurosci Lett 105:263–268PubMedCrossRefGoogle Scholar
  36. 36.
    Rami A, Rabie A, Thomasset M, Krieglstein J (1992) Calbindin-D28k and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res 31:89–95PubMedCrossRefGoogle Scholar
  37. 37.
    Freund TF, Maglóczky ZS (1993) Early degeneration of calretinin-containing neurons in the rat hippocampus after ischemia. Neurosci 56:581–596CrossRefGoogle Scholar
  38. 38.
    Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: Localization in the hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280: 183–196PubMedCrossRefGoogle Scholar
  39. 39.
    Freund TF, Ylinen A, Miettinen R, Pitkänen A, Lahtinen H, Baimbridge KG, Riekkinen PJ (1991) Pattern of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability. Brain Res Bull 28:27–38CrossRefGoogle Scholar

Copyright information

© ISA 1996

Authors and Affiliations

  • Yoko Mineta
    • 1
  • Hiroshi Koyanagi
    • 1
  • Masatoshi Morimoto
    • 2
  • Kiyoshi Harano
    • 1
  • Tadahide Totoki
    • 1
  • David M. Jacobowitz
    • 3
  1. 1.Department of AnesthesiologySaga Medical SchoolSagaJapan
  2. 2.Laboratory Animal CenterSaga Medical SchoolSagaJapan
  3. 3.Laboratory of Clinical ScienceNational Institute of Mental HealthBethesdaUSA

Personalised recommendations