Chromatographia

, Volume 49, Supplement 1, pp S7–S11 | Cite as

Nonaqueous capillary electrophoresis for the analysis of labile pharmaceutical compounds

  • A. Tivesten
  • S. Folestad
  • V. Schönbacher
  • K. Svensson
Originals

Summary

A screening method using nonaqueous capillary electrophoresis (NACE) has been developed for purity analysis of pyridinyl-methyl-sulfinyl-benzimidazoles (PMSB). Eight different polar organic solvents were tested as background electrolytes.N-Methylformamide (NMF) was found to have the best properties in respect of both electrophoretic behavior and high solubility of five different model compounds. Optimization of the CE separation with regard to the effects of addition of various electrolyte modifiers is reported. An additional feature of amide solvents, rarely utilized in CE, is their intrinsic basic nature; this is of particular interest for analysis of compounds such as the PMSB, the degradation of which is acid-catalyzed. It is shown here that these compounds are stable at room temperature for weeks in NMF solution. Results from quantitative application of the NACE method were highly precise (typically 1.8%RSD for normalized peak area); linearity was good and detection limit in drug purity determination was low (∼0.05 area % relative to the drug compound).

Key Words

Capillary electrophoresis Nonaqueous electrolytes N-Methylformamide UV-detection Pyridinyl-methyl-sulfinyl-benzimidazoles 

References

  1. [1]
    A. Brändström, P. Lindberg, N.-Å. Bergman, T. Alminger, K. Ankner, U. Junggren, B. Lamm, P. Nordberg, M. Erickson, I. Grundevik, I. Hagin, K.-J. Hoffman, S. Johansson, S. Larsson, I. Löfberg, K. Ohlson, B. Persson, I. Skånberg, L. Tekenbergs-Hjelte, Acta Chem. Scand.43, 536 (1989).CrossRefGoogle Scholar
  2. [2]
    M. Mathew, V. Das Gupta, R. E. Bailey, Drug Development and Industrial Pharmacy,21(8), 965 (1995).Google Scholar
  3. [3]
    Å. Pilbrant, C. Cederberg, Scand. J. Gastroenterol.20 (Suppl. 108), 113 (1985).Google Scholar
  4. [4]
    Y. Walbroehl, J. W. Jorgenson, J. Chromatogr.315, 135 (1984).CrossRefGoogle Scholar
  5. [5]
    R. S. Sahota, M. G. Khaledi, Anal. Chem.66, 1141 (1994).CrossRefGoogle Scholar
  6. [6]
    A. J. Tomlinson, L. M. Benson, S. Naylor, LC-GC Int. April, 210 (1995).Google Scholar
  7. [7]
    S. H. Hansen, J. Tjørnelund, I. Bjørnsdottir, Trends Anal. Chem.15, 175 (1996).Google Scholar
  8. [8]
    I. E. Valkó, H. Sirén, M.-L. Riekkola, LC-GC Int. March, 190 (1997).Google Scholar
  9. [9]
    M. Jansson, J. Roeraade, Chromatographia40, 163 (1995).CrossRefGoogle Scholar
  10. [10]
    J. Tjørnelund, S. H. Hansen, J. Chromatogr. A779, 235 (1997).CrossRefGoogle Scholar
  11. [11]
    E. Drange, E. Lundanes, J. Chromatogr. A771, 301 (1997).CrossRefGoogle Scholar
  12. [12]
    F. Wang, M. G. Khaledi, Anal. Chem.68, 3460 (1996).CrossRefGoogle Scholar
  13. [13]
    I. E. Valkó, H. Sirén, M.-L. Riekkola, J. Chromatogr. A737, 263 (1996).CrossRefGoogle Scholar
  14. [14]
    I. Valkó, H. Sirén, M.-L. Riekkola, Electrophoresis18, 919 (1997).CrossRefGoogle Scholar
  15. [15]
    Y. Mori, K. Ueno, T. Umeda, J. Chromatogr. A757, 328 (1997).CrossRefGoogle Scholar
  16. [16]
    E. Kenndlen, P. Jenner, J. Chromatogr.390, 169 (1987).CrossRefGoogle Scholar
  17. [17]
    R. G. Bates, Determination of pH—theory and practice, John Wiley & Sons, New York, 1973.Google Scholar
  18. [18]
    E. Örnskov, S. Folestad, in preparation.Google Scholar
  19. [19]
    A. Tivesten, S. Folestad, S. Norrman, A. P. Larsson, in preparation.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • A. Tivesten
    • 1
  • S. Folestad
    • 1
  • V. Schönbacher
    • 1
  • K. Svensson
    • 1
  1. 1.Analytical ChemistryMölndalSweden

Personalised recommendations