Advertisement

Chromatographia

, Volume 48, Issue 1–2, pp 111–119 | Cite as

Simultaneous GC-MS quantitation of phosphoric, aliphatic and aromatic carboxylic acids, proline and hydroxymethylfurfurol as their trimethylsilyl derivatives: In model solutions II

  • I. Molnár-Perl
  • A. Vasanits
  • K. Horváth
Originals

Summary

Fragmentation patterns and quantitation possibilities of gas chromatography-mass spectrometry (GC-MS) with Ion Trap Detection (ITD) are reported for the trimethylsilyl (TMS) derivatives of selected aliphatic and aromatic/cyclohexanoic, mono-, di- and polyhydroxy/methoxy carboxylic acids,o-phosphoric acid, proline and 5-hydroxymethylfurfurol (HMF)— (common in natural matrices, such as fruits, honey etc.). In order to maintain stability of derivatives, their stock solutions were diluted with hexamethyldisilazane. Quantitation was carried out simultaneously on the basis both of the total ion current (TIC) and selective fragment ion (SFI) values. Data obtained proved that (i) the fragmentation of different TMS acids provided very informative, utilizable characteristics, that were also suitable for quantitation; (ii) the type of fragments do not differ in their m/z values compared to those obtained in the Mass Spectral Database; (iii) the advantages of ITD due to its ‘soft’ fragmentation feature resulted in higher abundance of characteristic ions\([M]^{_ \cdot ^ + }\), ([M−CH3]+, [M+1]+, [M+TMS]+, [M+2TMS]+) compared to the non characteristic reagent ones (at m/z=73,147). Determination of oxalic, glycolic, pyruvic, levulinic, succinic, malic, pimelic, tartaric, citric, palmitic, oleic, stearic, arachidic, shikimic, quinic, chlorogenic acids, as well as those ofo-phosphoric acid, HMF and proline have been carried out in the concentration range of 1–20 ng of compounds. Reproducibility on the basis of TIC and SFI values, in the order listed, proved to be 0.8–8.6% and 1.3–16.0% (relative standard deviation percentages).

Key Words

Gas chromatography-mass spectrometry Shikimic, quinic, chlorogenic acids o-Phosphoric acid 5-Hydroxymethylfufurol Model solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    The NIST/EPA/NIH Mass Spectral Library, Version 1.1a, Copy right 1995, by U.S. Secretary of CommerceGoogle Scholar
  2. [2]
    S. Tisza, I. Molnár-Perl, HRC17, 165 (1994).Google Scholar
  3. [3]
    S. Tisza, M. Friedman, P. Sass, I. Molnár-Perl, HRC19, 54 (1996).Google Scholar
  4. [4]
    D. A. Laude, Jr., G. M. Brissey, C. F. Ijames, R. S. Brown, C. L. Wilkins, Anal. Chem.56, 1163 (1984).CrossRefGoogle Scholar
  5. [5]
    E. S. Olson, J. W. Diehl, Anal. Chem.59, 443 (1987).CrossRefGoogle Scholar
  6. [6]
    J. W. Eichelberger, W. L. Budde, L. E. Slivon, Anal. Chem.59, 2730 (1987).CrossRefGoogle Scholar
  7. [7]
    S. A. McLuckey, G. L. Glish, K. G. Asano, G. J. Von Berkel, Anal. Chem.60, 2314 (1988).CrossRefGoogle Scholar
  8. [8]
    P. A. Hedin, V. A. Philips, J. Agric. Food Chem.39, 1106 (1991).CrossRefGoogle Scholar
  9. [9]
    W. Püttmann, J. Chromatogr.552, 325 (1991).CrossRefGoogle Scholar
  10. [10]
    A. J. Vella, Org. Mass Spectrom.27, 145 (1992).CrossRefGoogle Scholar
  11. [11]
    I. Horman andH. Traitler, Biomed. Environ. Mass Spectrom.18, 1016 (1989).CrossRefGoogle Scholar
  12. [12]
    H. M. Liebich, C. Först, J. Chromatogr.525, 1 (1990).Google Scholar
  13. [13]
    S. Pazouki, J. D. Baty, H. M. Wallece, C. S. Coleman, Analyst115, 517 (1990).CrossRefGoogle Scholar
  14. [14]
    Hing-Biu Lee, T. E. Peart, J. M. Carron, J. Chromatogr.498, 367 (1990).CrossRefGoogle Scholar
  15. [15]
    Z. Mielniczuk, S. Alugupalli, E. Mielniczuk, L. Larsson, J. Chromatogr.623, 115 (1992).CrossRefGoogle Scholar
  16. [16]
    G. Petersson, Org. Mass Spectrom.6, 565 (1972).CrossRefGoogle Scholar
  17. [17]
    G. Petersson, Carbohydrate Res.33, 47 (1974).CrossRefGoogle Scholar
  18. [18]
    T. Masui, M Fujishima, Y. Mori, T. Shika, I. Matsumoto, Int. J. Mass Spectrom. Ion Phys.48, 225 (1983).CrossRefGoogle Scholar
  19. [19]
    D. R. Wing, D. J. Harvey, P. La Droitte, K. Robinson, S. Belcher, J. Chromatogr.368, 103 (1986).CrossRefGoogle Scholar
  20. [20]
    M. F. Lefevere, B. J. Verhaeghe, D. M. Declerc, A. P. De Leenheer, Biomed. Environ. Mass Spectrom.15, 311 (1988).CrossRefGoogle Scholar
  21. [21]
    U. Caruso, C. Roman, V. Raverdino, Biomed. Environ. Mass Spectrom.16, 285 (1988).CrossRefGoogle Scholar
  22. [22]
    E. L. Nimz, S. L. Morgan, J. Chromatogr.31, 145 (1993).Google Scholar
  23. [23]
    D. J. Harvey, J. Chromatogr.565, 27 (1991).Google Scholar
  24. [24]
    A. P. J. M. de Jong, J. Elema, B. J. T. van de Berg, Biomed. Mass Spectrom.7, 359 (1980).CrossRefGoogle Scholar
  25. [25]
    K. R. Kim, M. K. Hahn, A. Zlatkis, E. C. Horning, Middleditch, J. Chromatogr.468, 289 (1989).CrossRefGoogle Scholar
  26. [26]
    P. Shimek, A. Heydová, A Jegorov, HRC17, 145 (1994).Google Scholar
  27. [27]
    J. D. Shoemaker, W. H. Elliott, J. Chromatogr.562, 125 (1991).Google Scholar
  28. [28]
    R. P. Evershed, in Handbook of Derivatives for Chromatography, ed. byK. Blau, J. Halket, p. 53, Wiley New York (1993).Google Scholar
  29. [29]
    M. Linscheid, Fresenius' Z. Anal. Chem.337, 648 (1990).CrossRefGoogle Scholar
  30. [30]
    E. A. Bergner, W. N. P. Lee, J. Mass Spectrom.30, 778 (1995).CrossRefGoogle Scholar
  31. [31]
    C. S. Chaurasia, T. D. Williams, C. M. Judson, R. P. Hanzlik, J. Mass Spectrom.30, 1018 (1995).CrossRefGoogle Scholar
  32. [32]
    B. W. Patterson, R. R. Wolf, Biol. Mass Spectrom.22, 481 (1993).CrossRefGoogle Scholar
  33. [33]
    G. Spiteller, M. Spiteller-Friedmann, R. Houriet, Mh. Chem.97, 121 (1966).Google Scholar
  34. [34]
    J. Diekman, J. B. Thompson, C. Djerassi, J. Org. Chem.32, 3904 (1967).CrossRefGoogle Scholar
  35. [35]
    G. Petterson, Tetrahedron26, 31413 (1970).Google Scholar
  36. [36]
    D. J. Harvey, M. G. Horning, P. Vouros, Chem. Comm. 898, (1979).Google Scholar
  37. [37]
    M. Kraft, G. Spiteller, Org. Mass Spectrom.2, 541 (1969).CrossRefGoogle Scholar
  38. [38]
    T. J Odiorne, D. J. Harvey, P. Vouros, J. Org. Chem.38, 4279 (1973).CrossRefGoogle Scholar
  39. [39]
    I. A. Low, R. H. Liu, S. A. Barker, F. Fish, R. L. Settine, E. G. Piotrowski, W. C. Damert, J. Y. Liu, Biomed. Mass Spectrom.12, 633 (1985).CrossRefGoogle Scholar
  40. [40]
    A. P. Tulloch, L. R. Hogge, Chem. Phys. Lipids37, 271 (1985).CrossRefGoogle Scholar
  41. [41]
    D. J. Harvey, M. G. Horning, P. Vouros, Anal. Letters3, 489 (1970).Google Scholar
  42. [42]
    W. J. Richte, A. L. Burlingame, Chem. Comm. 1158 (1968).Google Scholar
  43. [43]
    W. Mo, J. F. J. Todd, Rapid Comm. Mass. Spectrom.10, 424 (1996).CrossRefGoogle Scholar
  44. [44]
    L-K. Ng, M. Hupé, J. Chromatogr.637, 104 (1993).CrossRefGoogle Scholar
  45. [45]
    M. Packert, H. Steinhart, J. Chromatogr. Sci.33, 631 (1995).Google Scholar
  46. [46]
    I. Pálinkó, Gy. Horváth, B. Török, J. Mass Spectrom.31, 823 (1996).CrossRefGoogle Scholar
  47. [47]
    C. Fuchs, G. Spiteller, J. Mass Spectrom.31, 602 (1996).CrossRefGoogle Scholar
  48. [48]
    S. Tisza, P. Sass, I. Molnár-Perl, J. Chromatogr.676, 461 (1994).CrossRefGoogle Scholar
  49. [49]
    I. Molnár-Perl, K. Horváth, Chromatographia45, 321 (1997).Google Scholar
  50. [50]
    K. Horváth, I. Molnár-Perl, Chromatographia45, 328 (1997).Google Scholar
  51. [51]
    I. Molnár-Perl, K. Horváth, R. Bartha, Chromatographia48, 101 (1998).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1998

Authors and Affiliations

  • I. Molnár-Perl
    • 1
  • A. Vasanits
    • 1
  • K. Horváth
    • 1
  1. 1.Institute of Inorganic & Analytical ChemistryL. Eötvös UniversityBudapest 112Hungary

Personalised recommendations