Chromatographia

, Volume 48, Issue 1–2, pp 101–110 | Cite as

GC-MS quantitation of benzoic and aralkyl carboxylic acids as their trimethylsilyl derivatives: In model solution I

  • I. Molnár-Perl
  • K. Horváth
  • R. Bartha
Originals

Summary

This paper describes the fragmentation patterns and the GC-MS quantitation possibilities of the trimethylsilyl derivatives of thirty-one aromatic carboxylic acids, using ion trap detection (ITD). Sixteen aralkyl carboxylic acids, including those containing a saturated aliphatic side chain {phenylacetic, 2-phenylbutyric, phenylglycolic (mandelic acid), β-phenyllactic, 3-hydroxyphenylacetic, β-phenylpyruvic and 3-(4-hydroxyphenyl)-propionic acids} and those with an unsaturated aliphatic side chain {cinnamic, 2-hydroxycinnamic (o-coumaric), 4-methoxycinnamic, 3-hydroxycinnamic (m-coumaric), 4-hydroxycinnamic (p-coumaric), 4-hydroxy-3-methoxycinnamic (ferulic acid), 3,4-dihydroxycinnamic (caffeic), and 4-dihydroxy-3,5-dimethoxycinnamic (sinapic) acids}, as well as, the fifteen hydroxy(methoxy) benzoic acids {benzoic, 2-hydroxybenzoic (salicylic), 3-hydroxybenzoic, 4-hydroxybenzoic, 3,5-dimethoxybenzoic, 3,4-dimethoxybenzoic (veratric), 2,6-dihydroxybenzoic (γ-resorcylic), 3-methoxy-4-hydroxybenzoic (vanillic), 2,5-dihydroxybenzoic (gentisic), 2,4-dihydroxybenzoic (β-resorcylic), 3,4-dihydroxybenzoic (protocatechuic), 3,5-dihydroxybenzoic (α-resorcylic), 2,4,5-trimethoxybenzoic (asaronic), 3,5-dimethoxy-4-hydroxybenzoic (syringic) and 3,4,5-trihydroxybenzoic (gallic) acids}, provided distinct fragmentation characteristics that were very useful for their identification and simultaneously quantitation. Based on 1–20 ng amounts of acids, very informative ions of high mass with considerable intensities ([M+TMS]+, [M+1]+),\(([M]^{_ \cdot ^ + } )\), ([M−CH3]+) were obtained. In the case of the cinnamic acid derivatives, several odd electron fragments are formed by the loss of CO, HCHO and/or Si(CH3)4 molecules. In the case of benzoic acids the molecular ion\(([M]^{_ \cdot ^ + } )\) proved to be abundant in three, the [M−CH3]+ ion in nine cases out of fifteen. The special MacLafferty rearrangement product ([C6H5Si(CH3)2]+) was obtained in different yields. In addition to the TIC values, at least three, and in most cases four, selective fragment ions could be utilized for quantitation. The reproducibility of the data in the concentration range of 1–20 ng acids proved to be between 1.2 and 13.0% (R.S.D.).

Key Words

Gas chromatography-mass spectrometry TMS-aromatic acids Fragmentation patterns TIC/fragment ions Quantitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. J. W. Brooks, W. J. Cole, Analyst110, 587 (1985).CrossRefGoogle Scholar
  2. [2]
    A. P. J. M. de Jong, J. Elema, B. J. T. van de Berg, Biomed. Mass Spectrom.7, 359 (1980).CrossRefGoogle Scholar
  3. [3]
    U. Caruso, C. Romano, V. Raverdino, Biomed. and Envirommental Mass Spectrom.16, 285 (1988).CrossRefGoogle Scholar
  4. [4]
    L-K. Ng, M. Hupé, J. Chromatogr.637, 104 (1993).CrossRefGoogle Scholar
  5. [5]
    M. Packert, H. Steinhart, J. Chromatogr. Sci.33, 631 (1995).Google Scholar
  6. [6]
    I. Pálinkó, Gy. Horváth, B. Török, J. Mass Spectrom.31, (1996).Google Scholar
  7. [7]
    C. Fuchs, G. Spiteller, J. Mass Spectrom.31, 602 (1996).CrossRefGoogle Scholar
  8. [8]
    A. C. Schoots, P. A. Leclercq, J. Mass Spectrom.6, 502 (1979).Google Scholar
  9. [9]
    K. J. Ng, B. D. Andresen, J. R. Bianchine, J. D. Iams, R. W. O'Shaunessy, L. E. Stempel, F. P. Zuspan, J. Chromatogr.228, 43 (1982).Google Scholar
  10. [10]
    P. Verner, J. Pharm. Biomed. Anal.6, 131 (1988).CrossRefGoogle Scholar
  11. [11]
    M. F. Lefevere, B. J. Verhaeghe, D. M. Declerck, A. P. De Leenheer, Biomed. and Environmental Mass Spectrom.15, 311 (1988).CrossRefGoogle Scholar
  12. [12]
    K. R. Kim, M. Hahn, A. Zlatkis, E. C. Horning, B. S. Middleditch, J. Chromatogr.468, 289 (1989).CrossRefGoogle Scholar
  13. [13]
    G. W. Chapman, Jr., R. J. Horvat, J. Agric. Food Chem.37, 947 (1989).CrossRefGoogle Scholar
  14. [14]
    S. Tisza, I. Molnár-Perl, HRC17, 165 (1994).Google Scholar
  15. [15]
    S. Tisza, P. Sass, I. Molnár-Perl, J. Chromatogr.676, 461 (1994).CrossRefGoogle Scholar
  16. [16]
    S. Tisza, M. Friedman, P. Sass, I. Molnár-Perl, HRC19, 54 (1996).Google Scholar
  17. [17]
    E. Steeg, A. Montag, Z. Lebensm. Unters. Forsch.184, 17 (1987).CrossRefGoogle Scholar
  18. [18]
    E. Steeg, A. Montag, Dtsch. Lebensm.-Rundsch.84, 103 (1988).Google Scholar
  19. [19]
    D. J. Harvey, M. G. Horning, P. Vouros, Chem. Comm.630, 898 (1979).Google Scholar
  20. [20]
    The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library, Version 1.1a, Copy right 1995, by U.S. secretary of Commerce.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1998

Authors and Affiliations

  • I. Molnár-Perl
    • 1
  • K. Horváth
    • 1
  • R. Bartha
    • 1
  1. 1.Institute of Inorganic & Analytical ChemistryL. Eötvös UniversityBudapest 112Hungary

Personalised recommendations