Chromatographia

, Volume 44, Issue 7–8, pp 362–366

The characterization of silica microparticles by electrophoretic mobility measurements

  • P. G. Dietrich
  • K. -H. Lerche
  • J. Reusch
  • R. Nitzsche
Originals

Summary

Electrophoretic mobility measurements in the pH 2‐10 range are described for several commercial HPLC silica microparticles and a laboratory-produced product. The content of metal impurities for the silicas was also determined by AAS. An acidic/hydrothermal treatment was used to generate a more homogenous surface for some of the silicas. The zero points of charge (zpc) for both a native and a treated silica plus several commercial HPLC silicas were compared. The electrophoretic mobility method may be useful in predicting the utility of certain types of silica supports for chromatographic separations.

Key Words

Silica surface Electrophoretic mobility Metal impurities Zero point of charge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. K. Unger, “Packings and Stationary Phases in Chromatographic Techniques”, Marcel Dekker, New York (1990).Google Scholar
  2. [2]
    H. Engelhardt, H. Müller, J. Chromatogr.218, 395 (1981).CrossRefGoogle Scholar
  3. [3]
    M. Verzele, M. de Potter, J. Ghysels, J. High Resolut. Chromatogr.9, 151 (1979).CrossRefGoogle Scholar
  4. [4]
    B. Pfleiderer, K. Albert, E. Bayer, L. van de Ven, J. de Haan, C. Cramers, J. Phys. Chem.94, 4189 (1990).CrossRefGoogle Scholar
  5. [5]
    J. Köhler, J. J. Kirkland, J. Chromatogr.385, 125 (1987).CrossRefGoogle Scholar
  6. [6]
    K. K. Unger, K. D. Lork, B. Pfleiderer, K. Albert, E. Bayer, J. Chromatogr.556, 395 (1991).CrossRefGoogle Scholar
  7. [7]
    K. D. Lork, Ph. D. Thesis, Johannes Gutenberg-Universität, Mainz, 1988.Google Scholar
  8. [8]
    B. Pfleiderer, Ph. D. Thesis, Eberhard-Karls-Universität, Tübingen, 1989.Google Scholar
  9. [9]
    P. G. Dietrich, A. Kunath, B. Hoffmann, E. Assmann, Z. Chemie28, 428 (1988).Google Scholar
  10. [10]
    J. Nawrocki, Chromatographia31, 177, 205 (1991).Google Scholar
  11. [11]
    H. Stach, J. Jänchen, H.-G. Jerschkewitz, U. Lohse, B. Parlitz, J. Phys. Chem.96, 8480 (1992).CrossRefGoogle Scholar
  12. [12]
    J. Kijenski, A. Baiker, Catal. Today5, 1 (1989).CrossRefGoogle Scholar
  13. [13]
    K. K. Unger, Porous Silica, Elsevier, Amsterdam, 1979, Chapter 2.2.Google Scholar
  14. [14]
    G. A. Parks, Chem. Rev.65, 177–198 (1965).CrossRefGoogle Scholar
  15. [15]
    A. M. Gaudin, D. W. Fuerstenau, Transactions AIME202, 66 (1955).Google Scholar
  16. [16]
    J. Köhler, D. B. Chase, R. D. Farlee, A. J. Vega, J. J. Kirkland, J. Chromatogr.352, 275 (1986).CrossRefGoogle Scholar
  17. [17]
    R. K. Iler, “The Chemistry of Silica”, John Wiley and Sons, New York, 1979, Chapter 6.Google Scholar
  18. [18]
    L. R. Snyder, J. L. Glajch, J. J. Kirkland, “Practical HPLC Method Development”, Johns Wiley and Sons, New York, 1988, p. 62.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1997

Authors and Affiliations

  • P. G. Dietrich
    • 1
  • K. -H. Lerche
    • 2
  • J. Reusch
    • 3
  • R. Nitzsche
    • 4
  1. 1.BerlinGermany
  2. 2.AERES GmbHBerlinGermany
  3. 3.BerlinGermany
  4. 4.M-M-PartikelmesstechnikKirschauGermany

Personalised recommendations