Functional Analysis and Its Applications

, Volume 31, Issue 2, pp 75–85 | Cite as

Boundary conditions for integrable lattices

  • V. É. Adler
  • I. T. Habibullin


Toda Lattice Integrable Boundary Condition Differential Constraint Shift Versus Local Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Sklyanin, “Boundary conditions for integrable systems,” Funkts. Anal. Prilozhen.,21, No. 2, 86–87 (1987).zbMATHMathSciNetGoogle Scholar
  2. 2.
    A. P. Veselov and A. B. Shabat, “Dressing chain and spectral theory of the Schrödinger operator,” Funkts. Anal. Prilozhen.,27, No. 2, 1–21 (1993).zbMATHMathSciNetGoogle Scholar
  3. 3.
    V. E. Adler, “Nonlinear chains and Painlevé equations,” Phys. D,73, 335–351 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    I. T. Habibullin, “Symmetries of boundary problems,” Phys. Lett. A,178, 369–375 (1993).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Gürel, M. Gürses, and I. T. Habibullin, “Boundary conditions, compatible with the symmetry algebra,” J. Math. Phys.,36, No. 12, 6809–6821 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    I. T. Habibullin and S. I. Svinolupov, “Integrable boundary value problems for the multicomponent Schrödinger equation,” Phys. D,87, 101–106 (1995).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. E. Adler and I. T. Habibullin, “Integrable boundary conditions for the Toda lattice,” J. Phys. A,28, 6717–6729 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    O. I. Bogoyavlenskii, Breaking Solitons. Nonlinear Integrable Equations [in Russian], Nauka, Moscow, 1991.Google Scholar
  9. 9.
    A. B. Shabat and R. I. Yamilov, “Symmetries of nonlinear chains,” Algebra Analiz,2, No. 2, 183 (1990).MathSciNetGoogle Scholar
  10. 10.
    D. Levi, “Nonlinear differential difference equations as Bäcklund transformations,” J. Phys. A,14, No. 5, 1083–1098 (1981).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Nijhoff, J. Satsuma, K. Kajiwara, B. Grammaticos, and A. Ramani, “A study of the alternate discrete Painlevé II equation,” Inverse Problems,12, 697–716 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. N. M. Ruijsenaars, “Relativistic Toda system,” Preprint Stichting Centre for Mathematics and Computer Sciences, Amsterdam, 1986.Google Scholar
  13. 13.
    M. Bruschi and O. Ragnisco, “The periodic relativistic Toda lattice: direct and inverse problem,” Inverse Problems,5, 389–405 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. I. Gromak and N. A. Lukashevich, Analytic Properties of Solutions to the Painlevé Equations [in Russian], Universitetskoe, Minsk, 1992.Google Scholar
  15. 15.
    A. R. Its, A. V. Kitaev, and A. S. Fokas, “The isomonodromy approach in the theory of two-dimensional quantum gravitation,” Usp. Mat. Nauk,45, No. 6, 135–136 (1987).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. É. Adler
  • I. T. Habibullin

There are no affiliations available

Personalised recommendations