Functional Analysis and Its Applications

, Volume 31, Issue 1, pp 25–39 | Cite as

Algebraic-geometricn-orthogonal curvilinear coordinate systems and solutions of the associativity equations

  • I. M. Krichever


Riemann Surface Algebraic Curve Hyperelliptic Curve Admissible Pair Hydrodynamic Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Darboux, Leçons sur le systèmes orthogonaux et les coordonnées curvilignes, Paris, 1910.Google Scholar
  2. 2.
    B. A. Dubrovin and S. P. Novikov, “The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method,” Dokl. Akad. Nauk SSSR,27, 665–654 (1983).zbMATHMathSciNetGoogle Scholar
  3. 3.
    B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices: Differential geometry and Hamiltonian theory,” Usp. Mat. Nauk,44, 35–124 (1989).zbMATHMathSciNetGoogle Scholar
  4. 4.
    S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. Generalized hodograph method,” Izv. Akad. Nauk SSSR, Ser. Mat.,54, No. 5, 1048–1068 (1990).zbMATHGoogle Scholar
  5. 5.
    B. Dubrovin, “Integrable systems in topological field theory,” Nuclear Phys. B,379, 627–689 (1992).MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. Krichever, “Tau-function of the universal Whitham hierarchy and topological field theories,” Comm. Pure Appl. Math.,47, 1–40 (1994).MathSciNetGoogle Scholar
  7. 7.
    V. Zakharov, Description of then-orthogonal curvilinear coordinate systems and hamiltonian integrable systems of hydrodynamic type. Part 1, Integration of the Lamé equations, Preprint (to appear in Duke Math. J.).Google Scholar
  8. 8.
    V. E. Zakharov and S. V. Manakov, Private communication.Google Scholar
  9. 9.
    E. Witten, “The structure of the topological phase of two-dimensional gravity,” Nuclear Phys. B,340, 281–310 (1990).MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Verlinder and H. Verlinder, A solution of two-dimensional topological quantum gravity, Preprint IASSNS-HEP 90/40, PUPT-1176, 1990.Google Scholar
  11. 11.
    I. M. Krichever, “The algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solutions,” Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).zbMATHMathSciNetGoogle Scholar
  12. 12.
    I. M. Krichever, “The integration of nonlinear equations with the help of algebraic-geometric methods,” Funkts. Anal. Prilozhen.,11, No. 1, 15–31 (1977).zbMATHGoogle Scholar
  13. 13.
    A. R. Its and V. B. Matveev, “On a class of solutions of the Korteweg-de Vries equation,” in: Problems of Mathematical Physics,8, Leningrad State University, 1976.Google Scholar
  14. 14.
    I. Krichever, O. Babelon, E. Billey, and M. Talon, “Spin generalization of the Calogero-Moser system and the matrix KP equation,” Am. Math. Soc. Transl. (2),170, 83–119 (1995).zbMATHMathSciNetGoogle Scholar
  15. 15.
    S. P. Novikov and A. P. Veselov, “Finite-gap two-dimensional periodic Schrödinger operators: exact formulas and evolution equations,” Dokl. Akad. Nauk SSSR,279, No. 1, 20–24 (1984).zbMATHMathSciNetGoogle Scholar
  16. 16.
    I. M. Krichever, “Algebraic-geometric two-dimensional operators with self-consistent potentials,” Funkts. Anal. Prilozhen.,28, No. 1, 26–40 (1994).zbMATHMathSciNetGoogle Scholar
  17. 17.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Dokl. Akad. Nauk SSSR,229, No. 1, 15–18 (1976).zbMATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • I. M. Krichever

There are no affiliations available

Personalised recommendations