Advertisement

Lithuanian Mathematical Journal

, Volume 38, Issue 1, pp 15–26 | Cite as

On simple continued fractions with partial quotients in arithmetic progressions

  • P. Bundschuh
Article

Keywords

Rational Approximation Continue Fraction Arithmetic Progression Congruence Condition Partial Quotient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, 9th ed., Dover, New York (1970).Google Scholar
  2. 2.
    W. W. Adams, Asymptotic diophantine approximations toe, Proc. Nat. Acad. Sci. USA,55, 28–31 (1966).zbMATHCrossRefGoogle Scholar
  3. 3.
    H. Alzer, On rational approximation toe, J. Number Theory,68, 57–62 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Bundschuh, Irrationalitätsmaße füre a,a≠0 rational oder Liouville-Zahl,Math. Ann.,192, 229–242 (1971).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Bundschuh, Scharie Irrationalitätsmaße für Zahlen, die mit Bessel-Funktionen zusammenhängen,Math. Z.,165, 251–260 (1979).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. S. Davis, On some simple continued fractions connected withe, J. London Math. Soc.,20, 194–198 (1945).zbMATHMathSciNetGoogle Scholar
  7. 7.
    C. S. Davis, Rational approximations toe, J. Austral. Math. Soc. Ser. A,25, 497–502 (1978).zbMATHMathSciNetGoogle Scholar
  8. 8.
    C. S. Davis, A note on rational approximation,Bull. Austral. Math. Soc.,20, 407–410 (1979).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Elianu, Sur le nombre [α, α+β,α+2β, ..., α+nβ, ...],Rev. Roumaine Math. Pures Appl.,20, 1061–1071 (1975).zbMATHMathSciNetGoogle Scholar
  10. 10.
    L. Euler, De fractionibus continuis dissertatio,Comm. Acad. Sci. Petropolitanae,9, 98–137 (1737);Opera Omnia, Ser. 1, XIV, 186–215.Google Scholar
  11. 11.
    A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen,Math. Ann.,92, 115–125 (1924).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. H. Lehmer, Continued fractions containing arithmetic progressions,Scripta Math.,29, 17–24 (1973).zbMATHMathSciNetGoogle Scholar
  13. 13.
    T. Okano, A note on the rational approximation toe, Tokyo J. Math.,15, 129–133 (1992).zbMATHMathSciNetGoogle Scholar
  14. 14.
    T. Okano, A note on the rational approximations to tanh(1/k),Proc. Japan Acad. Ser. A,69, 161–163 (1993).zbMATHMathSciNetGoogle Scholar
  15. 15.
    T. Okano, A note on the rational approximations toe 1/k,Tokyo J. Math.,17, 291–294 (1994).zbMATHMathSciNetGoogle Scholar
  16. 16.
    T. Okano, On the rational approximations to tanh 1/k, Tokyo J. Math.,18, 75–80 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    O. Perron,Die Lehre von den Kettenbrüchen, I, II, 3. Aufl., Teubner, Stuttgart (1954, 1957).Google Scholar
  18. 18.
    C. L. Siegel, Über einige Anwendungen diophantischer Approximationen,Abh. Preuß. Akad. Wiss. Berlin Kl. Math. Phys. Tech.,1 (1929);Gesammelte Abhandlungen,I, 209–266.Google Scholar
  19. 19.
    H. Zheng, On rational approximations ofe ±1/t (tεN),Northeastern Math. J.,5, 359–369 (1989).zbMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • P. Bundschuh

There are no affiliations available

Personalised recommendations