On simple continued fractions with partial quotients in arithmetic progressions
Article
- 80 Downloads
- 2 Citations
Keywords
Rational Approximation Continue Fraction Arithmetic Progression Congruence Condition Partial Quotient
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, 9th ed., Dover, New York (1970).Google Scholar
- 2.W. W. Adams, Asymptotic diophantine approximations toe, Proc. Nat. Acad. Sci. USA,55, 28–31 (1966).zbMATHCrossRefGoogle Scholar
- 3.H. Alzer, On rational approximation toe, J. Number Theory,68, 57–62 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
- 4.P. Bundschuh, Irrationalitätsmaße füre a,a≠0 rational oder Liouville-Zahl,Math. Ann.,192, 229–242 (1971).zbMATHMathSciNetCrossRefGoogle Scholar
- 5.P. Bundschuh, Scharie Irrationalitätsmaße für Zahlen, die mit Bessel-Funktionen zusammenhängen,Math. Z.,165, 251–260 (1979).zbMATHMathSciNetCrossRefGoogle Scholar
- 6.C. S. Davis, On some simple continued fractions connected withe, J. London Math. Soc.,20, 194–198 (1945).zbMATHMathSciNetGoogle Scholar
- 7.C. S. Davis, Rational approximations toe, J. Austral. Math. Soc. Ser. A,25, 497–502 (1978).zbMATHMathSciNetGoogle Scholar
- 8.C. S. Davis, A note on rational approximation,Bull. Austral. Math. Soc.,20, 407–410 (1979).zbMATHMathSciNetCrossRefGoogle Scholar
- 9.J. Elianu, Sur le nombre [α, α+β,α+2β, ..., α+nβ, ...],Rev. Roumaine Math. Pures Appl.,20, 1061–1071 (1975).zbMATHMathSciNetGoogle Scholar
- 10.L. Euler, De fractionibus continuis dissertatio,Comm. Acad. Sci. Petropolitanae,9, 98–137 (1737);Opera Omnia, Ser. 1, XIV, 186–215.Google Scholar
- 11.A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen,Math. Ann.,92, 115–125 (1924).zbMATHMathSciNetCrossRefGoogle Scholar
- 12.D. H. Lehmer, Continued fractions containing arithmetic progressions,Scripta Math.,29, 17–24 (1973).zbMATHMathSciNetGoogle Scholar
- 13.T. Okano, A note on the rational approximation toe, Tokyo J. Math.,15, 129–133 (1992).zbMATHMathSciNetGoogle Scholar
- 14.T. Okano, A note on the rational approximations to tanh(1/k),Proc. Japan Acad. Ser. A,69, 161–163 (1993).zbMATHMathSciNetGoogle Scholar
- 15.T. Okano, A note on the rational approximations toe 1/k,Tokyo J. Math.,17, 291–294 (1994).zbMATHMathSciNetGoogle Scholar
- 16.T. Okano, On the rational approximations to tanh 1/k, Tokyo J. Math.,18, 75–80 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
- 17.O. Perron,Die Lehre von den Kettenbrüchen, I, II, 3. Aufl., Teubner, Stuttgart (1954, 1957).Google Scholar
- 18.C. L. Siegel, Über einige Anwendungen diophantischer Approximationen,Abh. Preuß. Akad. Wiss. Berlin Kl. Math. Phys. Tech.,1 (1929);Gesammelte Abhandlungen,I, 209–266.Google Scholar
- 19.H. Zheng, On rational approximations ofe ±1/t (tεN),Northeastern Math. J.,5, 359–369 (1989).zbMATHGoogle Scholar
Copyright information
© Plenum Publishing Corporation 1998