Lithuanian Mathematical Journal

, Volume 37, Issue 3, pp 275–280

The universality of the Lerch zeta-function

  • Antanas Laurinčikas
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series,Ph.D. Thesis, Indian Statistical Institute, Calcutta (1981).Google Scholar
  2. 2.
    B. Bagchi, Joint universality theorem for Dirichlet L-functions,Math. Zeitschrift,181, 319–334 (1982).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Billingsley,Convergence of Probability Measures, Wiley, New York (1968).MATHGoogle Scholar
  4. 4.
    S. M. Gonek, Analytic properties of zeta andL-functions,Ph.D. Thesis, University of Michigan (1979).Google Scholar
  5. 5.
    A. Laurinčikas, Distribution des valeurs de certaines séries de Dirichlet,C.R. Acad. Sci. Paris, série A,289, 43–45 (1979).MATHGoogle Scholar
  6. 6.
    A. Laurinčikas, Value-distribution of generating Dirichlet series of multiplicative functions,Liet. Mat. Rinkinys,22(1), 101–111 (in Russian) (1982).Google Scholar
  7. 7.
    A. Laurinčikas, On the universality theorem,Liet. Mat. Rinkinys,23(3), 53–62 (1983).Google Scholar
  8. 8.
    A. Laurinčikas,Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht-Boston-London (1996).Google Scholar
  9. 9.
    R. Garunkštis and A. Laurinčikas, On the Lerch zeta-function,Lith. Math. J.,36, 337–346 (1996).CrossRefMATHGoogle Scholar
  10. 10.
    A. Laurinčikas, A limit theorem of the Lerch zeta-function in the space of analytic functions,Lith. Math. J.,37, 146–155 (1997).CrossRefMATHGoogle Scholar
  11. 11.
    A. Laurinčikas, On limit distribution of the Lerch zeta-function,Preprint, 1996.Google Scholar
  12. 12.
    A. Reich, Universelle Werteverteilung von Eulerprodukten,Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl.,1, 1–17 (1977).MATHGoogle Scholar
  13. 13.
    A. Reich, Zur Universalität und Hypertranszendenz der Dedekindschen zeta-funktion, in:Dedekind-Tagung. Über Algebra und Zahlentheorie, Technische Universität Braunschweig (1981).Google Scholar
  14. 14.
    S. M. Voronin, Theorem on the “universality” of the Riemann zeta-function,Izv. Akad. Nauk SSSR, Ser. Mat.,39, 475–486 (1975).MATHMathSciNetGoogle Scholar
  15. 15.
    S. M. Voronin, Analytic properties of generating Dirichlet functions of arithmetical objects [in Russian],Doctoral Thesis phys.-math. sci., Moscow (1977).Google Scholar
  16. 16.
    J. L. Walsh, Interpolation and approximation by rational functions in the complex domain,Amer. Math. Soc. Coll. Publ.,20 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Antanas Laurinčikas

There are no affiliations available

Personalised recommendations