Archive for History of Exact Sciences

, Volume 17, Issue 2, pp 193–200 | Cite as

The Jordan curve theorem and an unpublished manuscript by max dehn

  • H. Guggenheimer


Jordan Curve Finite Order Simple Polygon Polygonal Line Open Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cauchy, A.L., Sur les diverses relations qu'existent entre les résidus des fonctions et les intégrales définies. Exercices d'Analyse2 (1831)=Oeuvres II 6, 124–145.Google Scholar
  2. 2.
    Cauchy, A.L., Sur la théorie des fonctions, C.R. Acad. Sci. Paris43 (1856) 69=Oeuvres I, 12, 235.Google Scholar
  3. 3.
    Riemann, B., Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Gröse. Dissertation Göttingen 1831=Gesammelte mathematische Werke 3–45.Google Scholar
  4. 4.
    Riemann, B., Theorie der abelschen Functionen. J.f.d. reine u. angew. Math.54 (1857) 115–169 =Gesammelte mathematische Werke 88–142.zbMATHGoogle Scholar
  5. 5.
    Biermann, O., Theorie der analytischen Functionen, Teubner, Leipzig 1887.zbMATHGoogle Scholar
  6. 6.
    Neumann, C., Vorlesungen über Riemann's Theorie der Abel'schen Integrale. Teubner, Leipzig 1865, 2. Aufl. 1884.zbMATHGoogle Scholar
  7. 7.
    Thomae, J., Theorie der Functionen eines complexen Arguments, Halle 1891.Google Scholar
  8. 8.
    Jordan, C., Cours d'Analyse, Gauthier-Villars, Paris, 1e éd., vol.3 (1887) p. 587–594, 2e éd. vol.1 (1893) 90–99.Google Scholar
  9. 9.
    Schoenflies, A., Ueber einen Satz aus der Analysis situs. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1896, 79–89.Google Scholar
  10. 10.
    Pasch, M., Vorlesungen über neuere Geometrie, Teubner, Leipzig 1882.zbMATHGoogle Scholar
  11. 11.
    de la Vallée Poussin, C., Cours d'analyse infinitésimale, Libraire universitaire Louvain, Gauthier-Villars Paris, 1e éd. 1903, vol.1, p. 308; 3e éd. 1914, vol.1, 374–379.Google Scholar
  12. 12.
    Veblen, O., A System of Axioms for Geometry, TAMS5 (1904) 343–380.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ames, L.D., On the Theorem of Analysis Situs Relating to the Division of the Plane or of Space by a Closed Curve of Surface, BAMS10 (1904) 301–305.Google Scholar
  14. 14.
    Ames, L.D., An Arithmetic Treatment of Some Problems in Analysis Situs, Amer. J. Math.27 (1905) 345–358.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Osgood, W.F., Allgemeine Funktionentheorie I, Teubner, Leipzig 1906.Google Scholar
  16. 16.
    Bliss, G.A., The Exterior and Interior of a Plane Curve, BAMS10 (1904) 398–404.Google Scholar
  17. 17.
    Veblen, O., Theory of Plane Curves in Non-Metrical Analysis Situs, TAMS6 (1905) 83–98.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Schoenflies, A., Beiträge zur Theorie der Punktmengen, II. Math. Ann.59 (1904) 129–160.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Schoenflies, A., Beiträge zur Theorie der Punktmengen III. Math. Ann.62 (1906) 286–328.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Brouwer, L.E.J., Zur Analysis Situs. Math. Ann.68 (1910) 422–434.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hall, D.W., &Spenger, G.L. II, Elementary Topology. Wiley, New York, 1955.zbMATHGoogle Scholar
  22. 22.
    Young, W.H., & Young, G.C., The Theory of Sets of Points. Cambridge 1906 (reprinted, Chelsea, New York 1972).Google Scholar
  23. 23.
    Hahn, H., Über die Anordnungssätze der Geometrie. Monatsh. Math. Phys.19 (1908) 289–303.zbMATHCrossRefGoogle Scholar
  24. 24.
    Lennes, N.J., Theorems on the Simple Finite Polygon and Polyhedron. Amer. J. Math.33 (1911) 37–62, read to the AMS in April, 1903.zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lennes, N.J., Curves in Non-Metrical Analysis Situs with an Application in the Calculus of Variations, Amer. J. Math.33 (1911) 287–326, read to the AMS in December, 1905.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Guggenheimer, H., Méthodes topologiques en fondements de la géometrie, Bull. Res. Counc. Israel6A (1957) 103–114.MathSciNetGoogle Scholar
  27. 27.
    Brouwer, L.E.J., Beweis des Jordanschen Kurvensatzes, Math. Ann.69 (1910) 169–175.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Magnus, W., Noneuclidean Tesselations and Their Groups, Academic Press, New York-London, 1974.zbMATHGoogle Scholar
  29. 29.
    Meisters, G.H., Polygons Have Ears, Amer. Math. Monthly82 (1975) 648–651.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Bing, R.H., Elementary Point Set Topology. 8th Hubert Ellsworth Slaught Memorial Paper, {jtAmer. Math. Monthly} {vn67} ({dy1960}) {snno. 7}, part II.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • H. Guggenheimer
    • 1
  1. 1.Polytechnic Institute of New YorkBrooklyn

Personalised recommendations