Bulletin of Mathematical Biology

, Volume 53, Issue 1–2, pp 281–312 | Cite as

The economics of exhaustible resources

  • Harold Hotelling

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bliss, G. A. The problem of Lagrange in the calculus of variations. Unpublished.Google Scholar
  2. Caratheodory, C. 1904. Über die diskontinuirlichen Lösungen in der Variationsrechnung. Thesis, University of Göttingen.Google Scholar
  3. Edgeworth. 1897.Econ. J. 8, 231.Google Scholar
  4. Evans, G. C. 1924. The dynamics of monopoly.Am. math. Monthly 31.Google Scholar
  5. Evans, G. C. 1930.Mathematical Introduction to Economics. New York: McGraw-Hill.Google Scholar
  6. Forsyth, A. R.Calculus of Variations, pp. 17–28. Cambridge University Press.Google Scholar
  7. Hotelling. H. 1925. A general mathematical theory of depreciation.J. Am. statist. Assoc.Google Scholar
  8. Hotelling, H. 1929. Stability in competition.Econ. J. 39, 41.CrossRefGoogle Scholar
  9. Ramsey, F. P. 1928. A mathematical theory of saving.Econ. J. 38, 543.CrossRefGoogle Scholar
  10. Roos, C. F. 1925. A mathematical theory of competition.Am. J. Math. 47, 163.MATHMathSciNetCrossRefGoogle Scholar
  11. Roos, C. F. 1927a. A dynamical theory of economics.J. Polit. Econ 35, 632; 1927b. Generalized Lagrange problems in the calculus of variations.Trans. Am. math. Soc. 30, 360.CrossRefGoogle Scholar
  12. Roos, C. F. 1928. A mathemational theory of depreciation and replacement.Am. J. Math. 50, 147.MATHMathSciNetCrossRefGoogle Scholar
  13. Stocking, G. W. 1928.The Oil Industry and the Competitive System. New York: Houghton Mifflin.Google Scholar
  14. Van Orstrand, C. E. 1925. On the empirical representation of certain production curves.J. Wash. Acad. Sci. 15, 19.MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 1991

Authors and Affiliations

  • Harold Hotelling
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations