Advertisement

Histochemistry

, Volume 46, Issue 4, pp 297–306 | Cite as

The effect of graded 60°C 1N nitric acid extraction and of deoxyribonuclease digestion on nuclear staining by metachrome mordant dye metal salt mixtures

  • R. D. Lillie
  • P. T. Donaldson
  • P. Pizzolato
Article

Summary

We can divide metachrome mordant staining of nuclei after graded 60°C 1N nitric acid extraction into three groups. The feulgen nucleal reaction and dilute cationic dye staining of nuclei are abolished in about 30 minutes. With one group of metachrome dyes nuclear staining is lost with acid exposures of one hour or less. In a second group nuclear staining is weakened by 30–60 minute extractions, but persists in recognizable grade for 4–6 hours. In the third group nuclear staining remains almost unimpaired for 4–6 hours.

In the first group the nuclear staining seems clearly assignable to the nucleic acids and to DNA in particular. In the second group loss of part of the reactivity on short exposure indicates some participation of DNA in the control staining result, as well as participation of basic nucleoprotein. In the third group staining seems assignable largely to basic nucleoprotein.

The five gallocyanin group dyes, all in group1, all possess a dialkylamino group, probably functioning as an ammonium chloride. Hematoxylin, the fluorone blacks and gallein all present ano-hydroxysemiquinone group which probably acts as a weak acid, in addition to the carboxyl group of gallein which gives the strongest staining of nuclei at the longest acid exposure.

Dexyribonuclease digestion (2 hours, 37°C) separated sharply a class in which nuclear staining failed completely, a class in which nuclear staining was fully equal to that in the control preparations and an intermediate group in which slight, moderate, or severa impairment was present. Generally there was good agreement between the two methods of nucleic acid removal, despite the fixation difference. In each case, however, the extraction procedure was one worked out for the fixation on which it was used.

Keywords

Alizarin Feulgen Reaction Iron Alum Potassium Alum Fluorone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, W. B.: Differentiation of nucleic acids and acid mucopolysaccharides in histologic sections by selective extraction with acids. Science116, 303–305 (1952)PubMedGoogle Scholar
  2. DiStefano, H. S.: In discussion of Koenig and Stahlecker. Proc. Histochem. Soc., 1951. J. nat. Cancer Inst.12, 238 (1951)Google Scholar
  3. DiStefano, H. S.: Perchloric acid extraction of ribose nucleic acid from cytological preparations. Science115, 316–317 (1952)Google Scholar
  4. Einarson, L.: A method for progressive selective staining of Nissl and nuclear substance in nerve cells. Amer. J. Path8, 295–308 (1932)Google Scholar
  5. Feulgen, R., Rossenbeck, H.: Mikroskopisch-chemischer Nachweis einer Nukleinsäre von Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopische PräparatenGoogle Scholar
  6. Feulgen, R., Voit, K.: Über ein weitverbreiteten festen Aldehyd. Pflügers Arch. ges. Physiol.206, 389–410 (1924)CrossRefGoogle Scholar
  7. Fisher, E. R.: The destruction of cytoplasmic basophilia with mineral acids. Stain Technol.28, 9–12 (1953)PubMedGoogle Scholar
  8. Fullmer, H. M., Lillie, R. D.: Dilute unmordanted hematoxylin as a stain for basic nuclear protein. J. Histochem. Cytochem.10, 502–503 (1962)Google Scholar
  9. Fyg, W.: Über einige Karminfärbungen. Z. wiss. Mikr.45, 442–452 (1928)Google Scholar
  10. Kasten, F. H.: Loss of RNA and protein and changes in DNA during a 30-hour cold perchloric acid extraction of cultured cells. Stain Technol.40, 127–135 (1965)Google Scholar
  11. Kiefer, G., Zeller, W., Sandritter, W.: Eine Methode zur histochemischen Bestimmung von RNS und DNS an der gleichen Zelle. Histochemie,20, 1–10 (1964)CrossRefGoogle Scholar
  12. Koenig, H., Stahlecker, H.: Further studies on the differential extraction of nucleic acids from mammalian nerve cells with perchloric acid. J. nat. Cancer Inst,12, 237–238 (1951)Google Scholar
  13. Lillie, R. D.: Histopathologic technic and practical histochemistry, 2nd ed. New York: Blakiston 1954Google Scholar
  14. Lillie, R. D.: Histopathologic technic and practical histochemistry, 3rd ed. New York: McGraw-Hill 1965Google Scholar
  15. Lillie, R. D., Pizzolato, P., Dessauer, H. C., Donaldson, P. T.: Histochemical reaction at arginine sites with alkaline solutions of β-naphthoquinone-4-sodium sulfonate and othero-quinones and oxidizedo-diphenols. A possible mechanism of the Sakaguchi reaction. J. Histochem. Cytochem.19, 487–497 (1971)PubMedGoogle Scholar
  16. Lillie, R. D., Pizzolato, P., Welsh, R. A., Holmquist, N. D., Donaldson, P. T., Berger, C.: A consideration of substitutes for alum hematoxylin in routine histologica and cytologic diagnostic procedures. Amer. J. clin. Path.60, 817–819 (1973)Google Scholar
  17. Lillie, R. D., Pizzolato, P., Donaldson, P. T.: The Clara hematoxylin reaction. Acta Histochem.49, 204–219 (1974a)PubMedGoogle Scholar
  18. Lillie, R. D., Pizzolato, P., Donaldson, P. T.: Hemtoxylin substitutes: Gallein as a biological stain. Stain Technol.49, 339–346 (1974b)PubMedGoogle Scholar
  19. Lillie, R. D., Pizzolato, P., Donaldson, P. T.: Hematoxylin substitutes: Fluorone black and methyl fluorone balck (9-phenyl-and 9-methyl-2,3,7-trihydroxy-6-fluorone) as metachrome iron alum mordant dyes. Stain Technol.50, 127–131 (1975a)PubMedGoogle Scholar
  20. Lillie, R. D., Pizzolato, P., Donaldson, P. T.: Hematoxylin substitutes: A study of phenocyanin TC and the use of afterchrome mordanting in histology. Amer. J. clin. Path.65, 876–885 (1975b)Google Scholar
  21. Lillie, R. D., Pizzolato, P., Donaldson, P. T.: Hematoxylin substitutes: A survey of the mordant dyes tested and consideration of the relation of their structure to performance as nuclear stains. Stain Technol.50 (1975 c or 1976), in pressGoogle Scholar
  22. Lillie, R. D., Donaldson, P. T., Jirge, S. K., Pizzolato, P.: Iron and aluminum lakes of gallo blue E as nuclear and metachromatic mucin stains. Stain Technol.51 (1976), in pressGoogle Scholar
  23. Love, R., Rabotti, G.: Studies of the cytochemistry of nucleoproteins. III Demonstration of deoxyribonucleic-ribonucleic acid complexes in mammalian cells. J. Histochem. Cytochem.11, 605–612 (1963)Google Scholar
  24. Mallory, R. B.: Pathological Technique. Philadelphia: W. B. Saunders Co. 1938Google Scholar
  25. Meloan, S. N., Puchtler, H.: Iron alizarin blue S stain for nuclei. Stain Technol.49, 301–304 (1974)PubMedGoogle Scholar
  26. Neumeyer, G.: Hämatoxylin-Ersatz durch Anthracenblau. Zbl. allg. Path.84, 109–110 (1938)Google Scholar
  27. Ogur, M., Rosen, G.: Extraction and estimation of desoxypentose nucleic acid (DNA) and pentose nucleic acid (PNA) from plant tissues. Fed. Proc.8, 234 (1949)Google Scholar
  28. Proescher, F., Arkush, A. S.: Metallic lakes of the oxazines (Gallamin blue, Gallocyanin and Celestin blue) as nuclear stain substitutes for hematoxylin. Stain Technol.3, 28–40 (1928)Google Scholar
  29. Sandritte, W., Kiefer, G., Rick, W.: Über die Stochiometrie von Gallocyaninchromalaun mit Desoxyribonukleinsäure. Histochemie3, 315–340 (1963)CrossRefGoogle Scholar
  30. Seschacher, B. R., Flick, E. W.: Application of perchloric acid technique to protozoa. Science110, 659 (1949)Google Scholar
  31. Sulkin, N. M., Kuntz, A.: Histochemical determination of ribose nucleic acid in vertebrate tissues following extraction with perchloric acid. Proc. Soc. exp. Biol. (N. Y.)73, 413–415 (1950)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. D. Lillie
    • 1
  • P. T. Donaldson
    • 1
  • P. Pizzolato
    • 1
  1. 1.Department of PathologyLSU Medical CenterNew OrleansUSA

Personalised recommendations