Advertisement

Medical and Biological Engineering and Computing

, Volume 21, Issue 6, pp 739–749 | Cite as

Skin impedance and electro-osmosis in the human epidermis

  • S. Grimnes
Article

Abstract

It is well known that skin conductance is dependent on current flow through skin. It is shown that this may be due to an electro-osmotic effect. This can explain why in some cases negative and in other cases positive potentials increase skin conductance. Electro-osmosis implies current rectification, a powerful skin breakdown mechanism with potentials larger than 50V, and that negative d.c. potentials are more dangerous than positive on dry skin. Electro-osmosis may be a source of error in skin ionic permeability studies with electrical parameters.

Keywords

Electrical safety Electro-osmosis Skin electrical breakdown Skin impedance Skin permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, H. A. (1938) Production of wheals in the human skin,Science,87, 299.Google Scholar
  2. Abramson, H. A. andGorin, M. H. (1939) Relationship of skin permeability to electrophoresis of biologically active materials into the living human skin.J. Phys. Chem.,43, 335–346.CrossRefGoogle Scholar
  3. Barnett, A. (1938) The phase angle of normal human skin.J. Physiol.,93, 349–366.Google Scholar
  4. Blank, I. H. andFinesinger, J. E. (1946) Electrical resistance of the skin.Archs. Neurol. Psychiat.,56, 544–557.Google Scholar
  5. Carter, A. O. andMorley, R. (1969a) Electric current flow through human skin at power frequency voltages.Br. J. Ind. Med.,26, 217–223.Google Scholar
  6. Carter, A. O. andMorley, R. (1969b) Effects of power frquency voltages on amputated human limb.,26, 224–230.Google Scholar
  7. Ebbecke, U. (1923) Ueber Gewebsreizung und Gefässreaktion.Pflügers Arch,199, 197–216.CrossRefGoogle Scholar
  8. Edelberg, R., Greiner, T. andBurch, N. R. (1960) Some membrane properties of the effector in the galvanic skin response.J. Appl. Physiol.,15, 691–696.Google Scholar
  9. Flottorp, G. (1953) Effect of different types of electrodes in electrophonic hearing.J. Acoust. Soc. Am.,25, 236–245.CrossRefGoogle Scholar
  10. Gärtner, G. (1882) Untersuchungen über das elektrische Leitungsvermögen der menschlichen Haut.Mediz Jahrb Ges Arzte (Wien), 519–549.Google Scholar
  11. Geldard, F. A. (1972)The human senses. John Wiley & Sons, 261.Google Scholar
  12. Gildemeister, M. (1919) Über elektrischen Widerstand, Kapazität und Polarisation der Haut,Pflügers Arch.,176, 84–105.CrossRefGoogle Scholar
  13. Gildemeister, M. (1928) Die passiv-elektrischen Erscheinungen im Tier-und Pflanzenreich. Die Elektrizitätserzeugung der Haut und der Drüsen. InHandbuch der normalen und pathologischen Physiologie, Energieumsatz,Bethe, A., Bergman, G., Embden, G., Ellinger, A. (Eds.), Springer, 666.Google Scholar
  14. Glasstone, S. (1946)Textbook of physical chemistry. Van Nostrand.Google Scholar
  15. Grimnes, S. (1982) Psychogalvanic reflex and changes in electrical parameters of dry skin.Med. & Biol. Eng. & Comp.,20, 734–740.CrossRefGoogle Scholar
  16. Grimnes, S. (1982a) Skin capacitance as a measure of effetive electrode area. Proc. World Cong. Med. Phys. Biomed. Eng., Hamburg, 7.16.Google Scholar
  17. Grimnes, S. (1983) Dielectric breakdown of human skinin vivo.Med. & Biol. Eng. & Comp.,21, 379–381.Google Scholar
  18. Kuno, Y. (1956)Human perspiration. Thomas, 61.Google Scholar
  19. Leeming, M. N., Ray, C. andHowland, W. S. (1970) Lowvoltage, direct-current burns.JAMA,214, 1681–1684.CrossRefGoogle Scholar
  20. Molitor, H. andFernandez, L. (1939) Experimental studies on the causes and prevention of iontophoretic burns.Am. J. Med. Sci.,198, 778–785.Google Scholar
  21. Mueller, E. E., Loeffel, R. andMead, S. (1953) Skin impedance in relation to pain threshold testing by electrical means.J. Appl. Physiol.,5, 746–752.Google Scholar
  22. Munk, H. (1873) Ueber die galvanische Einführung differenter Flüssigkeiten in den unversehrten lebenden Organismus.Arch. Anat. Physiol. Wissenschaftl. Med., 505–516.Google Scholar
  23. Randall, W. C. (1946) Sweat gland activity and changing patterns of sweat secretion on the skin surface.Am. J. Physiol.,147, 391–398.Google Scholar
  24. Rein, H. (1924) Experimentelle Studie über Elektroendosmose an überlebender menschlicher Haut.Z. Biol.,81, 125–140.Google Scholar
  25. Rein, H. (1926) Untersuchungen über den Gleichstromwiderstand.,84, 118–142.Google Scholar
  26. Rosendal, T. (1940) The conducting properties of the human organism to alternating current. Thesis, Copenhagen, Munksgaard, 82.Google Scholar
  27. Rosendal, T. (1943) Studies on the conducting properties of the human skin to direct current.Acta. Physiol. Scand.,5, 130–151.Google Scholar
  28. Rosendal, T. (1944) Further studies on the conducting properties of human skin to direct and alternating current.,8, 183–203.CrossRefGoogle Scholar
  29. Rosendal, T. (1945) Concluding studies on the conducting properties of human skin to alternating current,9, 39–49.Google Scholar
  30. Scheuplein, R. J. andBlank, I. H. (1971) Permeability of the skin,Physiol. Rev.,51, 702–747.Google Scholar
  31. Schmid, G. (1951) Zur Elektrochemie feinporiger Kapillarsysteme. Elektroosmose.Z. Elektrochem.,55, 229–237.MathSciNetGoogle Scholar
  32. Stephens, W. G. S. (1963) The current-voltage relationship in human skin.Med. El. Biol. Eng.,1, 389–399.Google Scholar
  33. Swanson, D. K. andWebster, J. G. (1974) A model for skinelectrode impedance. InBiomedical electrode technology,Miller, H. A. andHarrison, D. C. (Eds.), Academic Press.Google Scholar
  34. Teorell, T. (1953) Transport processes and electrical phenomena in ionic membranes. InProgress in Biophysics,Butler, J. A. V. andRandall, J. T. (Eds.), Pergamon Press.Google Scholar
  35. Teorell, T. (1959) Electrokinetic membrane processes in relation to properties of excitable tissues.J. Gen. Physiol.,42, 831–845.CrossRefGoogle Scholar
  36. Thomas, P. E. andKorr, I. M. (1957) Relationship between sweat gland activity and electrical resistance of the skin.J. Appl. Physiol.,10, 505–510.Google Scholar
  37. Tregear, R. T. (1966)Physical functions of skin. Academic Press, 66, 70.Google Scholar
  38. Wilkins, R. W., Newman, H. W. andDoupe, J. (1938) The local sweat response to faradic stimulation.Brain,61, 290–297.Google Scholar
  39. Yamamoto, T. andYamamoto, Y. (1978) Dispersion and correlation of the parameters for skin impedance.Med. & Biol. Eng. & Comp.,16, 592–594.CrossRefGoogle Scholar
  40. Yamamoto, T. andYamamoto, Y. (1981) Non-linear electrical properties of the skin in the low frequency range.Med. & Biol. Eng. & Comp.,19, 302–310.CrossRefGoogle Scholar
  41. Yuan, S. W. (1970)Foundations of fluid mechanics. Prentice-Hall, 291.Google Scholar

Copyright information

© IFMBE 1983

Authors and Affiliations

  • S. Grimnes
    • 1
  1. 1.Department of Biomedical EngineeringRikshospitaletOslo 1Norway

Personalised recommendations