, Volume 29, Issue 6, pp 357–365 | Cite as

Extrasynaptic receptors of neurotransmitters: Distribution, mechanisms of activation, and physiological role

  • M. V. Kopanitsa


NMDA Receptor Glutamate Receptor Opioid Receptor Lateral Geniculate Nucleus Excitatory Synaptic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. von Gerlach, “Uber die Struktur der grauen Substanz des menschlichen Grosshirns,”Zentbl. Med. Wiss.,10, 273–275 (1872).Google Scholar
  2. 2.
    C. Golgi,Sulla Minuta Anatomia Degli Organi Centrali del Systema Nervoso, Milano (1885).Google Scholar
  3. 3.
    W. His, “Die Neuroblasten und deren Entstehung im embryonalen Marke,”Abh. math.-physik. Kl. sachs. Akad. Wiss.,15, 311–372 (1889).Google Scholar
  4. 4.
    A. Forel, “Einige hirnanatomische Betrachtungen und Ergebnisse,”Arch. Psychiat. Nervenkr.,18, 162–198 (1887).CrossRefGoogle Scholar
  5. 5.
    H. W. G. Waldeyer, “Uber einige neuere Forschungen im Gebiete der Anatomie des Zentralnervensystem,”Deutsche Med. Woch.,17, 1213–1218 (1891).CrossRefGoogle Scholar
  6. 6.
    S. Ramon-y-Cajal, “Les preuves objectives de l’unite anatomique des cellules nerveuses,”Trab. Lab. Invest. Biol. Univ. Madr.,29, 1–137 (1934).Google Scholar
  7. 7.
    C. S. Sherrington, “The central nervous system,” in:A Text-Book of Physiology, M. Foster (ed.), Macmillan, London (1897).Google Scholar
  8. 8.
    D. Eccles,Physiology of the Synapses [Russian translation], Mir, Moscow (1966).Google Scholar
  9. 9.
    G. Shepherd,Neurobiology, Vol. 1 [Russian translation], Mir, Moscow (1987).Google Scholar
  10. 10.
    T. M. Jessel and E. R. Kandel, “Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication,”Neuron,10, Suppl., 1–30 (1993).Google Scholar
  11. 11.
    P. Bach-y-Rita, “The brain beyond the synapse: a review,”NeuroReport,5, 1553–1557 (1994).PubMedGoogle Scholar
  12. 12.
    L. Descarries, P. Seguela, and K. Watkins, “Nonjunctional relationships of monoamine axon terminals in the cerebral cortex of adult rat,” in:Volume Transmission in the Brain. Novel Mechanisms for Neural Transmission, K. Fuxe and L. F. Agnati (eds.), Raven Press, New York (1991), pp. 53–62.Google Scholar
  13. 13.
    F. O. Schmitt, “Molecular regulators of brain function: a new view,”Neuroscience,13, 991–1001 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    L. F. Agnati, M. Zoli, I. Stromberg, and K. Fuxe, “Intercellular communication in the brain: wiring versus volume transmission,”Neuroscience,69, 711–726 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Herkenham, “Mismatches between neurotransmitter and receptor localizations in brain: observations and implications,”Neuroscience,23, 1–38 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Bach-y-Rita, “Neurotransmission in the brain by diffusion through the extracellular fluid: a review,”NeuroReport,4, 343–350 (1993).PubMedGoogle Scholar
  17. 17.
    E. Hansson, “Transmitter receptors on astroglial cells,” in:Volume Transmission in the Brain. Novel Mechanisms for Neural Transmission, K. Fuxe and L. F. Agnati (eds.), Raven Press, New York (1991), pp. 257–265.Google Scholar
  18. 18.
    C. J. McBain and M. L. Mayer, “N-methyl-D-aspartic acid receptor structure and function,”Physiol. Rev.,74, 723–759 (1994).PubMedGoogle Scholar
  19. 19.
    B. Bettler and C. Mulle, “Review: neurotransmitter receptors. II. AMPA and kainate receptors,”Neuropharmacology,34, 123–139 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    J. P. Pin and R. Duvoisin, “The metabotropic glutamate receptors: structure and functions,”Neuropharmacology,34, 1–26 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    J. M. Bekkers and C. F. Stevens, “NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus,”Nature,341, 230–241 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Stern, F. A. Edwards, and B. Sakmann, “Fast and slow components of unitary EPSCs on stellate cells solicited by focal stimulation in slices of rat visual cortex,”J. Physiol.,449, 257–278 (1992).Google Scholar
  23. 23.
    G. W. Huntley, J. C. Vickers, and J. H. Morrison, “Cellular and synaptic localization of NMDA and non-NMDA receptors subunits in neocortex: organizational features related to cortical circuitry, function and disease,”Trends Neurosci.,17, 536–543 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    Z. Nusser, E. Mulvihill, P. Streit, and P. Somogyi, “Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization,”Neuroscience,61, 421–427 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Baude, Z. Nusser, J. D. B. Roberts, et al., “The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction,”Neuron,11, 771–787 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    R. S. Petralia and R. J. Wenthold, “Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain,”J. Comp. Neurol.,318, 329–364 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Baude, E. Molnar, D. Latawiec, et al., “Synaptic and non-synaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum,”J. Neurosci.,14, 2830–2843 (1994).PubMedGoogle Scholar
  28. 28.
    L. J. Martin, C. D. Blackstone, A. I. Levey, et al., “AMPA glutamate receptors subunits are differentially distributed in rat brain,”Neuroscience,53, 327–358 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    J. C. Vickers, G. W. Huntley, A. M. Edwards, et al., “Quantitative localization of AMPA/kainate and kainate glutamate receptor subunit immunoreactivity in neurochemically identified subpopulations of neurons in the prefrontal cortex of the macaque monkey,”J. Neurosci.,13, 2982–2992 (1993).PubMedGoogle Scholar
  30. 30.
    C. J. Dechesne, M. D. Oberdofer, D. R. Hampson, et al., “Distribution of a putative kainic acid receptor in the frog central nervous system determined with monoclonal and polyclonal antibodies: evidence for synaptic and extrasynaptic localization,”J. Neurosci.,10, 479–490 (1990).PubMedGoogle Scholar
  31. 31.
    E. J. Bockstaele and E. E. Colago, “Ultrastructural localization of the kainate selective glutamate receptor in noradrenergic perikarya and dendrites of the nucleus locus coeruleus in the rat brain,”Brain Res.,732, 223–231 (1996).PubMedCrossRefGoogle Scholar
  32. 32.
    T. A. Benke, O. T. Jones, G. L. Collingridge, and K. J. Angelides, “N-methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons,”Proc. Natl. Acad. Sci. USA,90, 7819–7823 (1993).PubMedCrossRefGoogle Scholar
  33. 33.
    S. J. Siegel, N. Brose, W. G. Janssen, et al., “Regional, cellular, and ultrastructural distribution of N-methyl-D-aspartate receptor subunit 1 in monkey hippocampus,”Proc. Natl. Acad. Sci. USA,91, 564–568 (1994).PubMedCrossRefGoogle Scholar
  34. 34.
    C. Aoki, C. Venkatesan, C.-G. Go, et al., “Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats,”J. Neurosci.,14, 5202–5222 (1994).PubMedGoogle Scholar
  35. 35.
    H. Komuro and P. Rakic, “Modulation of neuronal migration by NMDA receptors,”Science,260, 95–97 (1993).PubMedGoogle Scholar
  36. 36.
    C. Aoki, “Postnatal changes in the laminar and subcellular distribution of NMDA-R1 subunits in the cat visual cortex as revealed by immuno-electron microscopy,”Dev. Brain Res.,98, 41–59 (1997).CrossRefGoogle Scholar
  37. 37.
    G. Bustos, J. Abarca, M. I. Forray, et al., “Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum:in vivo microdialysis studies,”Brain Res.,585, 105–115 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    M. O. Krebs, J. M. Desce, M. L. Kemel, et al., “Glutamatergic control of dopamine release in the rat striatum: evidence for presynaptic N-methyl-D-aspartate receptors on dopaminergic nerve terminals,”J. Neurochem.,56, 81–85 (1991).PubMedGoogle Scholar
  39. 39.
    J. Lehman, R. Valentino, and V. Robine, “Cortical norepinephrine release elicitedin situ by N-methyl-D-aspartate (NMDA) receptor stimulation: a microdialysis study,”Brain Res.,559, 171–174 (1992).CrossRefGoogle Scholar
  40. 40.
    T. Smirnova, J. Stinnakre, and J. Mallet, “Characterization of a presynaptic glutamate receptor,”Science,262, 430–433 (1993).PubMedGoogle Scholar
  41. 41.
    S. G. Cull-Candy and M. M. Usowicz, “Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons,”Nature,325, 525–528 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    S. N. Currie, X. F. Wang, and N. W. Daw, “NMDA receptors in layer II and III of rat cerebral cortex,”Brain Res.,662, 103–108 (1994).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Hausser and Arnd Roth, “Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells,”J. Physiol.,501, 77–95 (1997).PubMedCrossRefGoogle Scholar
  44. 44.
    B. A. Clark, M. Farrant, and S. G. Cull-Candy, “A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors,”J. Neurosci.,17, 107–116 (1997).PubMedGoogle Scholar
  45. 45.
    S. Coco, C. Verderio, D. Trotti, et al., “Non-synaptic localization of the glutamate transporter EAAC1 in cultured hippocampal neurons,”Eur. J. Neurosci.,9, 1902–1910 (1997).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Tanaka, R. Ichikawa, M. Watanabe, et al., “Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses,”NeuroReport,8, 2461–2464 (1997).PubMedGoogle Scholar
  47. 47.
    L. Silviotti and A. Nistri, “GABA receptor mechanisms in the central nervous system,”Prog. Neurobiol.,36, 35–92 (1991).CrossRefGoogle Scholar
  48. 48.
    K. J. Staley, B. L. Soldo, and W. R. Proctor, “Ionic mechanisms of neuronal excitation by inhibitory GABAA receptor,”Science,269, 977–980 (1995).PubMedGoogle Scholar
  49. 49.
    Y. Clement, “Structural and pharmacological aspects of the GABA receptor: involvement in behavioral pathogenesis,”J. Physiol.,90, 1–13 (1996).Google Scholar
  50. 50.
    N. Bowery, “GABAB receptors and their significance in mammalian pharmacology,”TIPS Rev.,10, 401–410 (1989).Google Scholar
  51. 51.
    R. Miles, K. Toth, A. I. Gulyas, et al., “Differences between somatic and dendritic inhibition in the hippocampus,”Neuron,16, 815–823 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    J. G. Richards, P. Schoch, P. Haring, et al., “Resolving GABAA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies,”J. Neurosci.,7, 1866–1886 (1987).PubMedGoogle Scholar
  53. 53.
    H. J. Waldvogel, R. L. M. Faull, K. L. R. Janssen, et al., “GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels,”Neuroscience,39, 361–385 (1990).PubMedCrossRefGoogle Scholar
  54. 54.
    S. Yazulla, K. M. Studholme, J. Vitorica, and A. L. De Blas, “Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas,”J. Comp. Neurol.,280, 15–26 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    P. Somogyi, H. Takagi, J. G. Richards, and H. Mohler, “Subcellular localization of benzodiazepine/GABAA receptors using monoclonal antibodies in the cerebellum of rat, cat and monkey,”J. Neurosci.,9, 2197–2209 (1989).PubMedGoogle Scholar
  56. 56.
    Z. Nusser, J. D. Roberts, A. Baude, et al., “Immunocytochemical localization of the α1 and β2/3 subunits of the GABAA receptor in relation to specific GABA-ergic synapses in the dentate gyrus,”Eur. J. Neurosci.,7, 630–646 (1995).PubMedCrossRefGoogle Scholar
  57. 57.
    I. Soltesz, J. D. B. Roberts, H. Takagi, et al., “Synaptic and nonsynaptic localization of benzodiazepine/GABAA receptor/Cl channel complex using monoclonal antibodies in the dorsal lateral geniculate nucleus of the cat,”Eur. J. Neurosci.,2, 414–429 (1990).PubMedCrossRefGoogle Scholar
  58. 58.
    Z. Nusser, J. D. Roberts, A. Baude, et al., “Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method,”J. Neurosci.,15, 2948–2960 (1995).PubMedGoogle Scholar
  59. 59.
    S. G. Cull-Candy and D. C. Ogden, “Ion channels activated by L-glutamate and GABA in cultured cerebellar neurons of the rat,”Proc. Roy. Soc. Lond. Ser. B,224, 367–373 (1985).CrossRefGoogle Scholar
  60. 60.
    G. Puia, E. Costa, and S. Vicini, “Functional diversity of GABA-activated Cl currents in Purkinje versus granule neurons in rat cerebellar slices,”Neuron,12, 117–126 (1994).PubMedCrossRefGoogle Scholar
  61. 61.
    K. Fuxe and L. F. Agnati, “Two principal modes of electrochemical communication in the brain: volume versus wiring transmission,” in:Volume Transmission in the Brain. Novel Mechanisms for Neural Transmission, K. Fuxe and L. F. Agnati (eds.), Raven Press, New York (1991), pp. 1–9.Google Scholar
  62. 62.
    A. Beaudet and L. Descarries, “The monoamine innervation of rat cerebral cortex: synaptic and non-synaptic axon terminals,”Neuroscience,3, 851–860 (1978).PubMedCrossRefGoogle Scholar
  63. 63.
    P. G. Strange, “Interesting times for dopamine receptors,”Trends Neurosci.,14, 43–45 (1991).PubMedCrossRefGoogle Scholar
  64. 64.
    J. C. Stoof, “Localization and pharmacology of some dopamine receptor complexes in the striatum and the pituitary gland: synaptic and non-synaptic communication,”Acta Morphol. Neerl. Scand., 26, 115–130 (1989).Google Scholar
  65. 65.
    A. I. Levey, S. M. Hersch, D. B. Rye, et al., “Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies,”Proc. Natl. Acad. Sci. USA, 90, 8861–8865 (1993).PubMedCrossRefGoogle Scholar
  66. 66.
    Q. Huang, D. Zhou, K. Chase, et al., “Immunocytochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and post-synaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus,”Proc. Natl. Acad. Sci. USA, 89, 11988–11992 (1992).PubMedCrossRefGoogle Scholar
  67. 67.
    K. K. L. Yung, J. P. Bolam, A. D. Smith, et al., “Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy,”Neuroscience, 65, 709–730 (1995).PubMedCrossRefGoogle Scholar
  68. 68.
    J. F. Smiley, A. I. Levey, B. J. Ciliax, and P. S. Goldman-Rakic, “D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines,”Proc. Natl. Acad. Sci. USA, 91, 5720–5724 (1994).PubMedCrossRefGoogle Scholar
  69. 69.
    M.-F. Chesselet, “Presynaptic regulation of neurotransmitter release in the brain: facts and hypothesis,”Neuroscience, 12, 347–375 (1984).PubMedCrossRefGoogle Scholar
  70. 70.
    S. L. Foote and J. H. Morrison, “Extrathalamic modulation of cortical function,”Annu. Rev. Neurosci., 10, 67–95 (1987).PubMedCrossRefGoogle Scholar
  71. 71.
    J. G. Parnavelas, G. C. Papadopoulos, and M. E. Cavanagh, “Changes in the neurotransmitters during development,” in:Development and Maturation of Cerebral Cortex, Vol. 7, Plenum Press, New York (1988), pp. 177–209.Google Scholar
  72. 72.
    I. V. Komissarov,Mechanisms of Chemical Sensitivity of the Synaptic Membranes [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  73. 73.
    L. S. Jones, L. L. Gauger, and J. N. Davis, “Anatomy of brain alpha1-adrenergic receptors:in vitro autoradiography with [125I]-Heat,”J. Comp. Neurol., 231, 190–208 (1985).PubMedCrossRefGoogle Scholar
  74. 74.
    C. Aoki, D. Kaufman, and T. C. Rainbow, “The ontogeny of the laminar distribution of alpha1-adrenergic receptors in the visual cortex of cats, normally reared and dark-reared,”Dev. Brain Res., 27, 109–116 (1986).CrossRefGoogle Scholar
  75. 75.
    C. Aoki, C.-G. Go, C. Venkatesan, and H. Kurose, “Perikaryal and synaptic localization of alpha2A-adrenergic receptor-like immunoreactivity,”Brain Res., 650, 181–204 (1994).PubMedCrossRefGoogle Scholar
  76. 76.
    C. Venkatesan, X. Z. Song, C.-G. Go, et al., “Cellular and subcellular distribution of alpha2A-adrenergic receptors in the visual cortex of neonatal and adult rats,”J. Comp. Neurol., 365, 79–85 (1996).PubMedCrossRefGoogle Scholar
  77. 77.
    C. Aoki, B. A. Zemcik, C. D. Strader, and V. M. Pickel, “Cytoplasmic loop of β-adrenergic receptors: synaptic and intracellular localization and relation to catecholaminergic neurons in the nuclei of the solitary tracts,”Brain Res., 493, 331–347 (1989).PubMedCrossRefGoogle Scholar
  78. 78.
    C. Aoki and V. M. Pickel, “Ultrastructural immunocytochemical evidence for presynaptic localization of β-adrenergic receptors in the striatum and cerebral cortex of rat brain,”Ann. New York Acad. Sci., 604, 582–585 (1990).Google Scholar
  79. 79.
    C. Aoki, “β-Adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry,”J. Neurosci., 12, 781–792 (1992).PubMedGoogle Scholar
  80. 80.
    B. I. Skok, A. A. Selyanko, and V. A. Derkach,Neuronal Cholinoreceptors [in Russian], Nauka, Moscow (1987).Google Scholar
  81. 81.
    S. Wonnacot, “Presynaptic nicotinic ACh receptors,”Trends Neurosci., 20, 92–98 (1997).CrossRefGoogle Scholar
  82. 82.
    J. M. Eccles, P. Fatt, and K. Koketsu, “Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons,”J. Physiol., 126, 524–562 (1954).PubMedGoogle Scholar
  83. 83.
    D. S. McGehee, M. J. S. Heath, S. Gelber, et al., “Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors,”Science, 269, 1692–1696 (1995).PubMedGoogle Scholar
  84. 84.
    H. Schroeder, K. Zilles, A. Maelicke, and F. Hajos, “Immunohisto-and cytochemical localization of cortical nicotinic cholinoreceptors in rat and man,”Brain Res., 502, 287–295 (1989).CrossRefGoogle Scholar
  85. 85.
    P. B. Sargent, S. H. Pike, D. B. Nadel, and J. M. Lindstrom, “Nicotinic acetylcholine receptor-like molecules in the retina, retino-tectal pathway, and optic tectum of the frog,”J. Neurosci., 9, 565–573 (1989).PubMedGoogle Scholar
  86. 86.
    E. M. Ullian and P. B. Sargent, “Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum,”J. Neurosci., 15, 7012–7023 (1995).PubMedGoogle Scholar
  87. 87.
    A. I. Levey, C. A. Kitt, W. F. Simonds, et al., “Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies,”J. Neurosci., 11, 3218–3226 (1991).PubMedGoogle Scholar
  88. 88.
    S. M. Hersch, C.-A. Gutekunst, H. D. Rees, et al., “Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies,”J. Neurosci., 4, 3351–3363 (1994).Google Scholar
  89. 89.
    S. T. Rouse, T. M. Thomas, and A. I. Levey, “Muscarinic acetylcholine receptor subtype, m2: diverse functional implications of differential synaptic localization,”Life Sci., 60, 1031–1038 (1997).PubMedCrossRefGoogle Scholar
  90. 90.
    D. V. Madison and R. A. Nicoll, “Enkephalin hyperpolarizes interneurones in the rat hippocampus,”J. Physiol., 398, 123–130 (1988).PubMedGoogle Scholar
  91. 91.
    J. E. Schroeder and E. W. McCleskey, “Inhibition of Ca2+ currents by a μ-opioid in a defined subset of rat sensory neurons,”J. Neurosci., 13, 867–873 (1993).PubMedGoogle Scholar
  92. 92.
    M. Capogna, B. H. Ghwiler, and S. M. Thomson, “Mechanism of μ-opioid receptor-mediated presynaptic inhibition in the rat hippocampusin vitro,”J. Physiol., 470, 539–558 (1993).PubMedGoogle Scholar
  93. 93.
    A. Mansour, H. Khachaturian, M. E. Lewis, et al., “Anatomy of CNS opioid receptors,”Trends Neurosci., 11, 308–314 (1988).PubMedCrossRefGoogle Scholar
  94. 94.
    E. Hamel and A. Beaudet, “Electron microscopic autoradiographic localization of opioid receptors in rat neostriatum,”Nature, 312, 155–157 (1984).PubMedGoogle Scholar
  95. 95.
    A. L. Svingos, A. Moriwaki, J. B. Wang, et al., “μ-Opioid receptors are localized to extrasynaptic plasma membranes of GABA-ergic neurons and their targets in the rat nucleus accumbens,”J. Neurosci., 17, 2585–2594 (1997).PubMedGoogle Scholar
  96. 96.
    E. J. Van Bockstaele, E. E. Colago, P. Cheng, et al., “Ultrastructural evidence for prominent distribution of the μ-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleuslocus coeruleus,”J. Neurosci., 16, 5037–5048 (1996).PubMedGoogle Scholar
  97. 97.
    E. J. Van Bockstaele, E. E. Colago, A. Moriwaki, and G. R. Uhi, “μ-Opioid receptor is located on the plasma membrane of dendrites that receive asymmetric synapses from axon terminals containing leucine-enkephalin in the rat nucleuslocus coeruleus,”J. Comp. Neurol., 376, 65–74 (1996).PubMedCrossRefGoogle Scholar
  98. 98.
    P. Y. Cheng, L. Y. Liu-Chen, C. Chen, et al., “Immunolabeling of μ-opioid receptors in the rat nucleus of the solitary tract: extrasynaptic plasmalemmal localization and association with Leu5-enkephalin,”J. Comp. Neurol., 371, 522–536 (1996).PubMedCrossRefGoogle Scholar
  99. 99.
    P. Y. Cheng, A. Moriwaki, J. B. Wang, et al., “Ultrastructural localization of μ-opioid receptors in the superficial layers of the rat cervical spinal cord: extrasynaptic localization and proximity to Leu5-enkephalin,”Brain Res., 731, 141–154 (1996).PubMedCrossRefGoogle Scholar
  100. 100.
    K. Maderspach, J. Takucs, G. Newiadomska, and A. Csillag, “Postsynaptic and extrasynaptic localization of κ-opioid receptor in selected brain areas of young rat and chick using an anti-receptor monoclonal antibody,”J. Neurocytol., 24, 478–486 (1995).PubMedCrossRefGoogle Scholar
  101. 101.
    K. G. Commons and T. A. Milner, “Localization of δ-opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus,”J. Comp. Neurol., 381, 373–387 (1997).PubMedCrossRefGoogle Scholar
  102. 102.
    B. Bjelke, R. England, C. Nicholson, et al., “Long distance pathways of diffusion for dextran along fibre bundles in brain. Relevance for volume transmission,”NeuroReport, 6, 1005–1009 (1995).PubMedCrossRefGoogle Scholar
  103. 103.
    P. Buma, “Synaptic and non-synaptic release of neuromediators in the central nervous system,”Acta Morphol. Neerl. Scand., 26, 81–113 (1989).Google Scholar
  104. 104.
    D. W. Golding, “A pattern confirmed and refined. Synaptic, nonsynaptic and parasynaptic exocytosis,”BioEssays, 16, 503–508 (1994).PubMedCrossRefGoogle Scholar
  105. 105.
    P. Buma and E. Roubos, “Ultrastructural demonstration of nonsynaptic release sites in the central nervous system of the snailLymnaea stagnalis, the insectPeriplaneta americana and the rat,”Neuroscience, 17, 867–879 (1986).PubMedCrossRefGoogle Scholar
  106. 106.
    B. E. Maley, M. G. Engle, S. Humphreys, et al. “Monoamine synaptic structure and localization in the central nervous system,”J. Electron. Microsc. Tech., 15, 20–33 (1990).PubMedCrossRefGoogle Scholar
  107. 107.
    S. A. Sarkisov,Notes on the Structure and Function of the Brain [in Russian], Nauka, Moscow (1964).Google Scholar
  108. 108.
    G. Levi and M. Raiteri, “Carrier-mediated release of neurotransmitters,”Trends Neurosci. 16, 415–419 (1993).PubMedCrossRefGoogle Scholar
  109. 109.
    D. Attwell, B. Barbour, and M. Szatkowski, “Nonvesicular release of neurotransmitter,”Neuron, 11, 401–407 (1993).PubMedCrossRefGoogle Scholar
  110. 110.
    D. Nicholls and D. Attwell, “The release and uptake of excitatory amino acids,”Trends Pharmacol. Sci., 11, 462–468 (1990).PubMedCrossRefGoogle Scholar
  111. 111.
    H. G. Pickles and M. A. Simmonds, “Possible presynaptic inhibition in rat olfactory cortex,”J. Physiol., 260, 475–486 (1976).PubMedGoogle Scholar
  112. 112.
    J. S. Isaacson, J. M. Solis, and R. A. Nicoll, “Local and diffuse synaptic actions of GABA in the hippocampus,”Neuron, 10, 165–175 (1993).PubMedCrossRefGoogle Scholar
  113. 113.
    P. Dutar and R. A. Nicoll, “A physiological role for GABAB receptors in the central nervous system,”Nature, 332, 156–158 (1988).PubMedCrossRefGoogle Scholar
  114. 114.
    T. S. Otis and I. Mody, “Differential activation of GABAA and GABAB receptors by spontaneously released transmitter,”J. Neurophysiol., 67, 227–235 (1992).PubMedGoogle Scholar
  115. 115.
    A. Destexhe and T. J. Seinowski, “G protein activation kinetics and spillover of γ-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus,”Proc. Natl. Acad. Sci. USA, 92, 9515–9519 (1995).PubMedCrossRefGoogle Scholar
  116. 116.
    D. M. Kullmann, G. Erdemli, and F. Asztely, “LIP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over,”Neuron, 17, 461–474 (1996).PubMedCrossRefGoogle Scholar
  117. 117.
    F. Asztely, G. Erdemli, and D. M. Kullmann, “Extrasynaptic glutamate spillower in the hippocampus: dependence on temperature and the role of active glutamate uptake,”Neuron, 18, 281–293 (1997).PubMedCrossRefGoogle Scholar
  118. 118.
    D. K. Patneau and M. L. Mayer, “Structure-activity relationships for amino-acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors,”J. Neurosci., 10, 2385–2399 (1990).PubMedGoogle Scholar
  119. 119.
    N. Burnashev, A. Khodorova, P. Jonas, et al. “Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells,”Science, 256, 1566–1570 (1992).PubMedGoogle Scholar
  120. 120.
    N. A. Lozovaya, T. Sh. Tsintsadze, M. V. Kopanitsa, et al., “Extrasynaptic spill-over of glutamate activated by anoxicaglycaemic episodes,” in:Abstr. Int. Symp. ‘Drug Targets in Heart and Brain Ischemia’ (Florence, Italy, July 11–14), Florence (1997), p. 51.Google Scholar
  121. 121.
    J. Tanaka, R. Ichikawa, M. Watanabe, et al., “Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses,”NeuroReport, 8, 2461–2464 (1997).PubMedCrossRefGoogle Scholar
  122. 122.
    D. S. Faber and H. Korn, “Synergism at central synapses due to lateral diffusion of transmitter,”Proc. Natl. Acad. Sci. USA, 85, 8708–8712 (1988).PubMedCrossRefGoogle Scholar
  123. 123.
    H.-J. Wagner, B.-G. Luo, M. A. Ariano, et al., “Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies,”J. Comp. Neurol., 331, 469–481 (1993).PubMedCrossRefGoogle Scholar
  124. 124.
    I. Mody, Y. De Koninck, T. S. Otis, and I. Soltesz, “Bridging the cleft at GABA synapses in the brain,”Trends Neurosci., 17, 517–525 (1994).PubMedCrossRefGoogle Scholar
  125. 125.
    M. B. A. Djamgoz and H. J. Wagner, “Localization and function of dopamine in the adult vertebral retina,”Neurochem. Int., 20, 139–191 (1992).PubMedCrossRefGoogle Scholar
  126. 126.
    A. Dearry and B. Burnside, “Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors,”J. Neurochem., 46, 1006–1021 (1986).PubMedGoogle Scholar
  127. 127.
    J. R. Wilson and A. E. Hendrickson, “Serotonergic axons in the monkey’s lateral geniculate nucleus,”Vis. Neurosci., 1, 125–133 (1988).PubMedCrossRefGoogle Scholar
  128. 128.
    K. Imamura and K. Kasamatsu, “Acutely induced shift in ocular dominance during brief monocular exposure: effects of cortical noradrenaline infusion,”Neurosci. Lett., 88, 57–62 (1988).PubMedCrossRefGoogle Scholar
  129. 129.
    S. Denlinger, R. Patarca, and J. A. Hobson, “Differential enhancement of rapid eye movement sleep signs in the cat: a comparison of microinjection of the cholinergic agonist carbachol and the beta-adrenergic antagonist propranolol on pontogeniculo-occipital wave clusters,”Brain Res., 473, 116–126 (1988).PubMedCrossRefGoogle Scholar
  130. 130.
    G. Aston-Jones and F. E. Bloom, “Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle,”J. Neurosci., 1, 876–886 (1981).PubMedGoogle Scholar
  131. 131.
    D. A. McCormick and A. J. Williamson, “Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal,”J. Neurosci., 11, 3188–3199 (1991).PubMedGoogle Scholar
  132. 132.
    Y. I. Arshavsky, T. G. Deliagina, I. M. Gelfand, et al., “Non-synaptic interactions between neurons in molluscs,”Comp. Biochem. Physiol., 91, 199–203 (1988).CrossRefGoogle Scholar
  133. 133.
    K. T. Kawagoe, P. A. Garris, D. J. Wiedemann, and R. M. Whightman, “Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum,”Neuroscience, 51, 55–64 (1992).PubMedCrossRefGoogle Scholar
  134. 134.
    B. Bjelke, I. Stromberg, W. T. O’Connor, et al., “Evidence for volume transmission in the dopamine denervated striatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment,”Brain Res., 662, 11–24 (1994).PubMedCrossRefGoogle Scholar
  135. 135.
    B. S. Meldrum, “Protection against ischaemic neuronal damage by drugs acting on excitatory neurotransmission,”Cerebrovasc. Brain Metab. Rev., 2, 27–57 (1990).PubMedGoogle Scholar
  136. 136.
    D. W. Choi and S. M. Rothman, “The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,”Annu. Rev. Neurosci., 1, 11–17 (1990).Google Scholar
  137. 137.
    E. Vizi,Non-synaptic Interactions Between Neurons: Modulation of Neurochemical Transmission, John Wiley, Chichester (1984).Google Scholar
  138. 138.
    K. W. Muir and K. R. Lees, “Clinical experience with excitatory amino acid antagonist drugs,”Stroke, 26, 503–513 (1995).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. V. Kopanitsa
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations