Advertisement

Functional Analysis and Its Applications

, Volume 32, Issue 4, pp 247–257 | Cite as

Lefschetz fixed point theorem for quantized symplectic transformations

  • V. E. Shatalov
  • B. Yu. Sternin
Article
  • 51 Downloads

Keywords

Integral Operator Phase Function Zero Section Fourier Integral Operator Symplectic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Atiyah and R. Bott, “A Lefschetz fixed point formula for elliptic complexes,” Ann. Math.,86, 374–407 (1967).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow, 1973.zbMATHGoogle Scholar
  3. 3.
    A. Mishchenko, V. Shatalov, and B. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer-Verlag, Berlin-Heidelberg, 1990.zbMATHGoogle Scholar
  4. 4.
    B. Sternin and V. Shatalov, Ten Lectures on Quantization, Preprint Univ. de Nice-Sophia Antipolis, Vol. 22, Nice, 1994.Google Scholar
  5. 5.
    B. V. Fedosov, “Trace formula for Schrödinger operator,” Russian J. Math. Phys.,1, 447–463 (1993).zbMATHMathSciNetGoogle Scholar
  6. 6.
    B. Sternin and V. Shatalov, “The Atiyah-Bott-Lefschetz fixed point theorem in symplectic geometry,” Dokl. Ross. Akad. Nauk,348, No. 2, 165–168 (1996).zbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Sternin and V. Shatalov, Quantization of Symplectic Transformation and the Lefschetz Fixed Point Theorem, Preprint Max-Planck Institut für Mathematik, Vol. 92, Bonn, 1994.Google Scholar
  8. 8.
    V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], MSU, Moscow, 1965.Google Scholar
  9. 9.
    V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, 1985.Google Scholar
  10. 30.
    B. V. Fedosov, “Index theorems,” In: Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki, Vol. 65, VINITI, Moscow, 1991, pp. 165–268.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. E. Shatalov
  • B. Yu. Sternin

There are no affiliations available

Personalised recommendations