Bulletin of Mathematical Biology

, Volume 57, Issue 5, pp 701–712 | Cite as

A universal bifurcation diagram for seasonally perturbed predator-prey models

  • Alessandra Gragnani
  • Sergio Rinaldi
Article

Abstract

The bifurcations of a periodically forced predator-prey model (the chemostat model), with a prey feeding on a limiting nutrient, are numerically detected with a continuation technique. Eight bifurcation diagrams are produced (one for each parameter in the model) and shown to be topologically equivalent. These diagrams are also equivalent to those of the most commonly used predator-prey model (the Rosenzweig-McArthur model). Thus, all basic modes of behavior of the two main predator-prey models can be explained by means of a single bifurcation diagram.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Ferences

  1. Afrajmovich, V. S., V. I. Arnold, Yu. S. Il'ashenko and P. Shinlnikov. 1991. Bifurcation theory. InDynamical Systems, Vol. 5, V. I. Arnold (Ed.),Encyclopaedia of Mathematical Sciences. New York: Springer Verlag.Google Scholar
  2. Allen, J. C. 1989. Are natural enemy populations chaotic? InEstimation and Analysis of Insect Populations, Lecture Notes in Statistics, Vol. 55, L. McDonald, B. Manly, J. Lockwood and J. Logan (Eds), pp. 190–205. New York: Springer Verlag.Google Scholar
  3. Bajaj, A. K. 1986. Resonant parametric perturbations of the Hopf bifurcation.J. Math. Anal. Appl. 155, 214–224MathSciNetCrossRefGoogle Scholar
  4. Doveri, F., M. Scheffer, S. Rinaldi, S. Muratori and Yu. A. Kuznetsov. 1993. Seasonality and chaos in a plankton-fish model.Theor. pop. Biol. 43, 159–183.MATHCrossRefGoogle Scholar
  5. Gambaudo, J. M. 1985. Perturbation of a Hopf bifurcation by an external time-periodic forcing.J. Diff. Eqns. 57, 172–199.MATHMathSciNetCrossRefGoogle Scholar
  6. Gary, C., W. Sabin and D. Summer. 1993. Chaos in a periodically forced predator-prey ecosystem model.Math. Biosc. 113, 91–113.CrossRefGoogle Scholar
  7. Guckenheimer, J. and P. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York: Springer Verlag.Google Scholar
  8. Hanski, I., P. Turchin, E. Korpimäki and H. Henttonen 1993. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos.Nature 364, 232–235.CrossRefGoogle Scholar
  9. Hastings, A., C. L. Hom, S. Ellner, P. Turchin and H. C. J. Godfray. 1993. Chaos in ecology: is mother nature a strange attractor?Ann. Rev. Ecol. Syst. 24, 1–33.Google Scholar
  10. Inoue, M. and H. Kamifukumoto. 1984. Scenarios leading to chaos in forced Lotka-Volterra model.Prog. theor. Phys. 71, 930–937.MATHMathSciNetCrossRefGoogle Scholar
  11. Kath, W. L. 1981. Resonance in a periodically perturbed Hopf bifurcation.Stud. Appl. Math. 65, 95–112.MATHMathSciNetGoogle Scholar
  12. Khibnik, A. I., Yu. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev. 1993. Continuation techniques and interactive software for bifurcation analysis of ODEs and interated maps.physica D 62, 360–370.MATHMathSciNetCrossRefGoogle Scholar
  13. Kot, M., G. S. Sayler and T. W. Schultz. 1992. Complex dynamics in a model microbial system.Bull. Math Biol. 54, 619–648.MATHCrossRefGoogle Scholar
  14. Kuznetsov, Yu. A. and S. Rinaldi, 1991. Numerical analysis of the flip bifurcation of maps.Appl. math. Comp. 43, 231–236.MATHMathSciNetCrossRefGoogle Scholar
  15. Kuznetsov, Yu. A., S. Muratori and S. Rinaldi. 1992. Bifurcation and chaos in a periodic predator-prey model.Int. J. Bifurcation Chaos 2, 117–128.MATHMathSciNetCrossRefGoogle Scholar
  16. Namachchivaya, S. N. and S. T. Ariaratnam. 1987. Periodically perturbed Hopf bifurcation.SIAM J. appl. Math. 47, 15–39.MATHMathSciNetCrossRefGoogle Scholar
  17. Pavlou, S. and I. G. Kevrekidis. 1992. Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies.Math. Biosc. 108, 1–55.MATHMathSciNetCrossRefGoogle Scholar
  18. Rinaldi, S. and S. Muratori. 1993. Conditioned chaos in seasonally perturbed predator-prey models.Ecol. Model. 69, 79–97.CrossRefGoogle Scholar
  19. Rinaldi, S., S. Muratori and Yu. A. Kuznetsov. 1993. Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities.Bull. Math. Biol. 55, 15–35.MATHCrossRefGoogle Scholar
  20. Robertson, D. R., C. W. Petersen and J. D. Brawn. 1990. Lunar reproductive cycles of benthicbroading reef fishes: reflections of larval biology or adult biology?Ecol. Monogr. 60, 311–329.CrossRefGoogle Scholar
  21. Rosenblat, S. and D. S. Cohen. 1981. Periodically perturbed bifurcation-II Hopf bifurcation.Stud. appl. Math. 64, 143–175.MATHMathSciNetGoogle Scholar
  22. Schaffer, W. M. 1988. Perceiving order in the chaos of nature. InEvolution of Life Histories of Mammals, M. S. Boyce (Ed.), pp. 313–350. New Haven: Yale University Press.Google Scholar
  23. Toro, M. and J. Aracil. 1988. Qualitative analysis of system dynamics ecological models.Syst. Dyn. Rev. 4, 56–80.Google Scholar

Copyright information

© Society for Mathematical Biology 1995

Authors and Affiliations

  • Alessandra Gragnani
    • 1
  • Sergio Rinaldi
    • 2
  1. 1.IIASALaxenburgAustria
  2. 2.CIRITAPolitecnico di MilanoMilanoItaly

Personalised recommendations