Bulletin of Mathematical Biology

, Volume 55, Issue 6, pp 1199–1210 | Cite as

Complexity of protein folding

  • Aviezri S. Fraenkel
Article

Abstract

It is believed that the native folded three-dimensional conformation of a protein is its lowest free energy state, or one of its lowest. It is shown here that both a two-and three-dimensional mathematical model describing the folding process as a free energy minimization problems is NP-hard. This means that the problem belongs to a large set of computational problems, assumed to be very hard (“conditionally intractable”). Some of the possible ramifications of this results are speculated upon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anfinsen, C. B. 1973. Principles that govern the folding of protein chains.Science 181, 223–230.Google Scholar
  2. Barahona, f. 1982. On the computational complexity of ising spin glass models.J. Phys. A: Math. Gen. 15, 3241–3253.MathSciNetCrossRefGoogle Scholar
  3. Barahona, F., R. Maynard, R. Rammal and J. P. Uhry. 1982. Morphology of ground states of two-dimensional frustration model.J. Phys. A: Math. Gen. 15, 673–699.MathSciNetCrossRefGoogle Scholar
  4. Baxter, R. J. 1982.Exactly Solved Models in Statistical Mechanics London: Academic Press.MATHGoogle Scholar
  5. Bennett, C. H., F. Bessette, G. Brassard, L. Salvail and J. Smolin. 1992a. Experimental quantum cryptographys.J. Crypt. 5, 3–28.MATHGoogle Scholar
  6. Bennett, C. H. and G. Brassard. 1989. The dawn of a new era for quantum cryptography: the experimental prototype is working!,Assoc. comput. mach SIGACT News 20 (4), 78–82.CrossRefGoogle Scholar
  7. Bennett, C. H., G. Brassard C. Crépeau and M.-H. Skubiszewska. 1992b. Practical quantum oblivious transfer.Proc. Crypt. 91, 351–366.Google Scholar
  8. Bennett, C. H., G. Brassard and N. D. Mermin. 1992. Quantum cryptography without Bell's theorem.Phys. Rev. Lett. 68. 557–559.MATHMathSciNetCrossRefGoogle Scholar
  9. Bieche, I., R. Maynard, R. Rammal and J. P. Uhry. 1980. On the ground states of the frustration model of a spin glass by a matching method of graph theory.J. Phys. A. Math. Gen. 13, 2553–2567.MathSciNetCrossRefGoogle Scholar
  10. Brassard, G. 1988.Modern Cryptology, Lecture Notes in Computer Science, Vol. 325. New York: Springer-Verlag.MATHGoogle Scholar
  11. Brassard, G. and C. Crépeau. 1990. Quantum bit commitment and coin tossing protocols.Proc. Crypt. 90, 49–61.Google Scholar
  12. Deutsch, D. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer.Proc. R. Soc. London A 400, 97–117.MATHMathSciNetGoogle Scholar
  13. Deutsch, D. 1989. Quantum computational networks.Proc. R. Soc. London A 425, 73–90.MATHMathSciNetCrossRefGoogle Scholar
  14. Fraenkel, A. S. 1990. Deexponentializing complex computational mathematical problems using physical or biological systems. Technical Report CS90-30. Department of Applied mathematics and Computer Science. Weizman Institute of Science.Google Scholar
  15. Garey, M. R. and D. S. Johnson. 1979.Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco, CA: Freeman.MATHGoogle Scholar
  16. Gierasch, L. M. and J. King (Eds.) 1990.Protein folding: Deciphering the Second Half of the Genetic Code. Washington, D.C.: American Association for the Advacement of Science.Google Scholar
  17. Janin, J. and S. J. Wodak. 1983. Structural domains in proteins and their role in the dynamics of protein function.Prog. Biophys molec. Biol. 42, 21–78.CrossRefGoogle Scholar
  18. Levitt, M. and S. Lifson. 1969. Refinement of protein conformations using a macromolecular energy minimization procedure.J. molec. Biol. 46, 269–279.CrossRefGoogle Scholar
  19. Levitt, M. and R. Sharon. 1988. Accurate simulation of protei dynamics in solution.Proc. natn. Acad. Sci. U.S.A. 85, 7557–7561.CrossRefGoogle Scholar
  20. Privalov, P. L. 1979. Stability of proteins.Adv. Protein Chem. 33, 167–241.Google Scholar
  21. Privalov, P. L. 1982. Stability of proteins: proteins which do not present a single cooperative system.Adv. Protein Chem. 35, 1–104.CrossRefGoogle Scholar
  22. Robertson, N. and P. D. Seymour. 1988. Graph minors XV, Wagner's conjecture, manuscript.Google Scholar
  23. Unger, R. and J. Moult. 1993. Finding the lowest free energy conformation of a protein is a NP-complete problem: proof and implications.Bull. math. Biol. 55, 1183–1198.MATHCrossRefGoogle Scholar
  24. Wasserman, S. A. and N. R. Cozzarelli. 1986. Biochemical topology: applications to DNA recombination and replication.Science 232, 951–960.Google Scholar
  25. Welsh, D. J. A. 1993. The complexity of knots.Ann. Disc. Math. 55, 159–171.MATHMathSciNetCrossRefGoogle Scholar
  26. Wiesner, S. 1983. Conjugate coding.Assoc. comput. mach. SIGACT News 15 (1), 78–88 (manuscript written about 1970).MATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1993

Authors and Affiliations

  • Aviezri S. Fraenkel
    • 1
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations