Advertisement

Bulletin of Mathematical Biology

, Volume 55, Issue 6, pp 1183–1198 | Cite as

Finding the lowest free energy conformation of a protein is an NP-hard problem: Proof and implications

  • Ron Unger
  • John Moult
Article

Abstract

The protein folding problem and the notion of NP-completeness and NP-hardness are discussed. A lattice model is suggested to capture the essece of protein folding. For this model we present a proof that finding the lowest free energy conformation belongs to the class of NP-hard problems. The implications of the proof are discussed and we suggest that the natural folding process cannot be considered as a search for the global free energy minimum. However, we suggest an explanation as to why, for many proteins, the native functional conformation maycoincide with the lowest free energy conformation.

Keywords

Free Energy Conformational Space Hamiltonian Path Polynomial Solution Folding Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anfinsen, C. B. 1973. Principles that govern the folding of proteins chains.Science 181, 223–230.Google Scholar
  2. Anfinsen, C. B., E. Haber, M. Sela and F. H. White. 1961. The kinetics of formation of native Ribonuclease during oxidation of the reduced polypeptide chain.Proc. natn. Acad. Sci. U.S.A. 47, 1309–1314.CrossRefGoogle Scholar
  3. Bernstein, F. C., T. F. Koetzle, G. J. B. Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi and M. Tasumi. 1977. The protein data bank: a computer-based archival file for macromolecular structures.J. molec. Biol. 112, 535–542.Google Scholar
  4. Blundell, T. L., B. L. Sibanda, M. J. E. Sternberg and J. M. Thornton. 1987. Knowledge-based preduction of protein structures and the design of novel molecules.Nature 326, 347–352.CrossRefGoogle Scholar
  5. Brooks, C. L., M. Karplus and B. M. Pettitt. 1988.Proteins: A theoretical Perspective of Dynamics. Structure, and Thermodynamics (Advances in Chem. Physics, Vol. 71) New York: Wiley.Google Scholar
  6. Clore M. G. and A. M. Gronenborn. 1991. Comparison of the solution nuclear magnetic resonance and X-ray structures of human recombinant Interleukin-1β.J. mole. Biol. 221, 47–53.CrossRefGoogle Scholar
  7. Cook, S. A. 1971. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM Symp. on Theory of Computing, ACM New York, pp. 151–158.Google Scholar
  8. Covell, D. G. and R. L. Jernigan. 1990. Conformation of folded proteins in restricted spaces.Biochemistry 29, 3287–3294.CrossRefGoogle Scholar
  9. Dill, K. A. 1990. Dominant forces in protein folding.Biochemistry 29, 7133–7155.CrossRefGoogle Scholar
  10. Fraenkel, A. S. 1990 Deexponentializing complex computational mathematical problems using physical and biological systems. TR. CS90-30, The Weizmann Institute of Sciences, Rehovot, Israel.Google Scholar
  11. Fraenkel, A. S. 1993. Complexity of protein folding.Bull. math. Biol. 55, 1199–1210.MATHCrossRefGoogle Scholar
  12. Garey, M. R. and D. S. Johnson. 1979.Computers and Intractability: A Guide to the Theory of NP-Completeness (San Francisco, CA: Freeman.MATHGoogle Scholar
  13. Garey, M. R., D. S. Johnson and L. Stockmeyer. 1976. Some simplified NP-complete graph problems.Theor. comput. Sci. 1, 237–267.MATHMathSciNetCrossRefGoogle Scholar
  14. Gething, M. J. and J. Sambrook. 1992. Protein folding in the cell.Nature 355, 33–44.CrossRefGoogle Scholar
  15. Herzberg, O. and J. Moult. 1991. Analysis of the steric strain in the polypeptide backbone of proteins.Proteins 11, 223–229.CrossRefGoogle Scholar
  16. Holm, L. and C. Sander. 1991. Database algorithm for generating protein backbone and side chain coordinates from aC α trace.J. molec. Biol. 218, 183–194.CrossRefGoogle Scholar
  17. Karplus, M. and D. L. Weaver. 1976. Protein folding dynamics.Nature 260, 404–406.CrossRefGoogle Scholar
  18. Kleene, S. C. 1952.Introduction to Metamathematics. Princeton, NJ: D. Van Nostrand.MATHGoogle Scholar
  19. Levinthal, C. 1969. InMossbauer Spectroscopy in Biological Systems. Proceedings of a meeting held at Allerton House Monticello, IL. P. Debrunner, J. Tsibris and E. Munck (Eds), pp. 22–24. Urbana, IL: University of Illinois Press.Google Scholar
  20. Levitt, M. 1983a. Molecular dynamics of native proteins: analysis and nature of motion.J. molec. Biol. 168, 621–657.Google Scholar
  21. Levitt, M. 1983b. Protein folding by restrained energy minimization and molecular dynamics.J. molec. Biol. 170, 723–764.Google Scholar
  22. Levitt, M. and A. Warshel. 1975. Computer simulation of protein folding.Nature 253, 694–698.CrossRefGoogle Scholar
  23. Mazur, J. 1969. Non self intersecting random walks. InStochastic Processes in Chemical Physics. K. E. Shuler Ed.), pp. 261–280 New York: Interscience Publishers.Google Scholar
  24. Moult, J. 1989. Comparative modeling of protein structure: progress and prospects.J. Res. natn Inst. Stand Technol. 94, 79–84.Google Scholar
  25. Moult, J. and R. Unger. 1991. An analysis of protein folding pathways.Biochemistry 30, 3816–3824.CrossRefGoogle Scholar
  26. Ngo, J. T. and Marks, J. 1992. Computational complexity of a problem in molecular structure prediction.Protein Engng 5, 313–321.Google Scholar
  27. Ramakrishnan, C. and G. N. Ramachandran. 1965. Stereochemical criteria for polypeptide and protein chain conformation.Biophys. J. 5, 909–933.CrossRefGoogle Scholar
  28. Seetharamulu, P. and G. M. Crippen. 1991. A potential function for protein folding.J. math. Chem. 6, 91–110.CrossRefGoogle Scholar
  29. Serrano, L., A. Matouschek and A. R. Fersht. 1992. The folding of an enzyme: VI. The folding pathway of Baranase: Comparison with theoretical models.J. molec. Biol. 224, 847–859.CrossRefGoogle Scholar
  30. Svansson, L. A., J. Dill, L. Sjolin, A. Wlodawar, M. Toner, D. Bacon, J. Moult, B. Veerapandian and G. L. Gilliland. 1991. The crystal packing interactions of two different crystal forms of bovine Ribonuclease A.J. Cryst. Growth 110, 119–130.CrossRefGoogle Scholar
  31. Udgonkar, J. B. and R. L. Baldwin. 1988. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A.Nature 335, 694–699.CrossRefGoogle Scholar
  32. Unger, r., D. Harel, S. Wherland and J. L. Sussman. 1990. Analysis of dihedral angales distribution: The doublets distribution determines polypeptides conformations.Biopolymers 30, 499–508.CrossRefGoogle Scholar
  33. Wetlaufer, D. B. 1973. Nucleation, rapid folding, and globular interchain regions in proteins.Proc. natn Acad. Sci. U.S.A. 70, 697–701.CrossRefGoogle Scholar
  34. Wlodawer, A., M. Miller, M. Jaskolski, B. K. Sthayanarayana, E. Baldwin, I. T. Weber, L. M. Selk, L. Clawson, J. Schneider andS. B. H. Kent. 1989. Conserved folding in retroviral protease: crystal structure of a synthetic HIV-1 protease.Science 245, 616–621.Google Scholar

Copyright information

© Society for Mathematical Biology 1993

Authors and Affiliations

  • Ron Unger
    • 2
  • John Moult
    • 1
  1. 1.Center for Advanced Reserch in biotechnology, Maryland Biotechnology InstituteUniversity of MarylandRockvilleU.S.A.
  2. 2.Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations