Advertisement

Bulletin of Mathematical Biology

, Volume 54, Issue 6, pp 1069–1081 | Cite as

Use of a flexible logistic function to describe axial growth of plants

  • Anne Krislov Morris
  • Wendy Kuhn Silk
Article

Abstract

A sigmoid curve with three fitting parameters is proposed as a descriptive model for the spatial velocity field in one-dimensional growth of plant organs. Analytic expressions are derived for the relative elemental growth (REG) rate, the position and value of the REG rate maximum, the length of the growth zone, the inverse of the growth trajectory and cell length in the “elongation only” zone. The expressions are fit to published data to characterize the effects of environmental variation on growth of monocotyledonous roots. The simple expressions for growth may prove useful in mechanistic models. The fitted curves summarize more than a decade of observations and thus provide a challenge to theorists.

Keywords

Velocity Field Growth Zone Cell Length Maize Root Growth Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Barlow, P. W., P. Brain, P. and J. S. Parker. 1991. Cellular growth in roots of a gibberellin-deficient mutant of tomato (Lycopersicon esculentum Mill.) and its wild-type.J. Exp. Bot. 42, 339–351.Google Scholar
  2. Bertalanffy, L. von. 1960. Principles and theory of growth. InFundamental Aspects of Normal and Malignant Growth, W. W. Nowinski (Ed.), New York: Elsevier.Google Scholar
  3. Buff, E. M., M. Baake, and A. Sievers. 1987. An empirical function for the description of root growth.Plant Physiol. 83, 685–690.Google Scholar
  4. Erickson, R. O. and K. B. Sax. 1956. Elemental growth rate of the primary root ofZea mays.Proc. Am. Phil. Soc. 100, 487–498.Google Scholar
  5. Esau, K. 1965.Plant Anatomy. New York: John Wiley.Google Scholar
  6. France, J. and J. H. Thornley. 1984.Mathematical Models in Agriculture. London: Butterworth.zbMATHGoogle Scholar
  7. Gandar, P. W. 1980. The analysis of growth and cell production in root apices.Bot. Gaz. 141, 131–138.CrossRefGoogle Scholar
  8. Gandar, P. W. 1983. Growth in root apices. I. The kinematic description of growth.Bot. Gaz. 144, 1–10.CrossRefGoogle Scholar
  9. Gandar, P. W. and A. J. Hall. 1988. Estimating position-time relationships in steady-state, one-dimensional growth zones.Planta 175, 121–129.CrossRefGoogle Scholar
  10. Goodwin, R. H. and C. J. Avers. 1956. Studies on roots. III. An analysis of root growth in Phleum pratense using photomicrographic records.Am. J. Bot. 43, 479–487.CrossRefGoogle Scholar
  11. Gray, L. H. and M. E. Scholes. 1951. The effect of ionizing radiations on the broad bean root. Part VIII growth rate studies and histological analyses.Brit. J. Radiol. 24, 82–92.CrossRefGoogle Scholar
  12. Green, P. B. 1976. Growth and cell pattern formation on an axis. Critique of concepts, terminology and modes of study.Bot. Gaz. 137, 187–202.CrossRefGoogle Scholar
  13. Hejnowicz, Z. 1984. Trajectories of principal directions of growth, natural coordinate system in growing plant organ.Acta Soc. Bot. Polon. 53, 29–42.Google Scholar
  14. Hsiao, T. C., W. K. Silk and J. Jing. 1985. Leaf growth and water deficits. InControl of Leaf Growth, N. R. Baker, W. J. Davies and C. K. Ong (Eds), pp. 239–266, Soc. Exp. Biol. Sem., 27, Cambridge, U.K.: Cambridge University Press.Google Scholar
  15. Morris, A. 1990. The Richards Function as a Model for Axial Growth. Master's Thesis, University of California, Davis.Google Scholar
  16. Pahlavanian, A. and W. K. Silk. 1988. Effect of temperature on spatial and temporal aspects of growth in the primary maize root.Plant Physiol. 87, 529–532.Google Scholar
  17. Richards, F. J. 1959. A flexible growth function for empirical use.J. Exp. Bot. 29, 290–300.MathSciNetGoogle Scholar
  18. Richards, O. W. and A. J. Kavanagh. 1943. The analysis of the relative growth gradients and changing form of growing organisms: Illustrated by the tobacco leaf.Am. Nat. 77, 385–399.CrossRefGoogle Scholar
  19. Rogers, D. F. and J. A. Adams. 1976.Mathematical Elements for Computer Graphics. New York: McGraw-Hill.Google Scholar
  20. Savageau, M. A. 1980. Growth equations: A general equation and a survey of special cases.Math. Biosci. 48, 267–278.zbMATHMathSciNetCrossRefGoogle Scholar
  21. Sharp, R. E., W. K. Silk and T. C. Hsiao. 1988. Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth.Plant Physiol. 87, 50–57.Google Scholar
  22. Silk, W. K. 1989. Growth rate patterns which maintain a helical tissue tube.J. Theor. Biol. 138, 311–327.Google Scholar
  23. Silk, W. K., E. M. Lord and K. J. Eckard. 1989. Growth patterns inferred from anatomical records.Plant Physiol. 90, 708–713.CrossRefGoogle Scholar
  24. Silk, W. K. and R. O. Erickson. 1979. Kinematics of plant growth.J. Theor. Biol. 76, 481–501.CrossRefGoogle Scholar
  25. Silk, W. K. and R. O. Erickson. 1978. Kinematics of hypocotyl curvature.Am. J. Bot. 65, 310–319.CrossRefGoogle Scholar
  26. Silk, W. K. and S. A. Haidar. 1986. Growth of the stem ofPharbitis nil: analysis of longitudinal and radial components.Physiol. Veg. 24, 109–116.Google Scholar
  27. Taiz, L. 1984. Plant cell expansion: regulation of cell wall mechanical properties.Ann. Rev. Plant Physiol. 35, 585–657.Google Scholar
  28. Verhulst, P. F. 1838. Notice sur la quoi que la population suit dans son acroissement.Corr. Math. Phys. 10, 113–121.Google Scholar

Copyright information

© Society for Mathematical Biology 1992

Authors and Affiliations

  • Anne Krislov Morris
    • 1
  • Wendy Kuhn Silk
    • 1
  1. 1.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisU.S.A.

Personalised recommendations