Bulletin of Mathematical Biology

, Volume 57, Issue 3, pp 413–439

Topological and phenomenological classification of bursting oscillations

  • Richard Bertram
  • Manish J. Butte
  • Tim Kiemel
  • Arthur Sherman
Article

Abstract

We describe a classification scheme for bursting oscillations which encompasses many of those found in the literature on bursting in excitable media. This is an extension of the scheme of Rinzel (inMathematical Topics in Population Biology, Springer, Berlin, 1987), put in the context of a sequence of horizontal cuts through a two-parameter bifurcation diagram. We use this to describe the phenomenological character of different types of bursting, addressing the issue of how well the bursting can be characterized given the limited amount of information often available in experimental settings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alving, B. 1968. Spontaneous activity in isolated somata of Aplysia pacemaker neurons.J. Gen. Physiol. 51, 29–45.CrossRefGoogle Scholar
  2. Ashcroft, F. and P. Rorsman. 1989. Electrophysiology of the pancreatic β-cell.Prog. Biophys. molec. Biol. 54, 87–143.CrossRefGoogle Scholar
  3. Av-Ron, E., H. Parnas and L. Segel. 1993. A basic biophysical model for bursting neurons.Biol. Cybern. 69, 87–95.CrossRefGoogle Scholar
  4. Baer, S. M., T. Erneux and J. Rinzel. 1989. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance.SIAM J. Appl. Math. 49, 55–71.MATHMathSciNetCrossRefGoogle Scholar
  5. Bertram, R. 1993. A computational study of the effects of serotonin on a molluscan burster neuron.Biol. Cybern. 69, 257–267.MATHCrossRefGoogle Scholar
  6. Bertram, R. 1994. Reduced-system analysis of the effects of serotonin on a molluscan burster neuron.Biol. Cybern. 70, 359–368.MATHGoogle Scholar
  7. Canavier, C. C., J. W. Clark and J. H. Byrne. 1991. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters.J. Neurophysiol. 66, 2107–2124.Google Scholar
  8. Canavier, C. C., D. A. Baxter, J. W. Clark and J. H. Byrne. 1993. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity.J. Neurophysiol. 69, 2252–2257.Google Scholar
  9. Chay, T. R. and D. L. Cook. 1988. Endogenous bursting patterns in excitable cells.Math. Biosci. 90, 139–153.MathSciNetCrossRefGoogle Scholar
  10. Crunelli, V., J. S. Kelly, N. Leresche and M. Pirchio. 1987. The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro.J. Physiol. 384, 587–601.Google Scholar
  11. Dean, P. M. and E. K. Matthews. 1970. Glucose-induced electrical activity in pancreatic islet cells.J. Physiol. 210, 255–264.Google Scholar
  12. Deschênes, M., J. P. Roy and M. Steriade. 1982. Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization.Brain Res. 239, 289–293.CrossRefGoogle Scholar
  13. Doedel, E. 1981. Auto: A program for the automatic bifurcation analysis of autonomous systems.Cong. Num. 30, 265–284.MATHMathSciNetGoogle Scholar
  14. Dumortier, F., R. Roussarie and J. Sotomayor. 1991. Generic 3-parameter families of planar vector fields, unfoldings of saddle, focus and elliptic singularities with nilpotent linear parts. InBifurcations of Planar Vector Fields: Nilpotent Singularites and Abelian Integrals, F. Dumortier, R. Roussarie, J. Sotomayor and H. Żoŀadek (Eds), Lecture Notes in Mathematics, Vol. 1480, pp. 1–164. Berlin: Springer.Google Scholar
  15. Ermentrout, G. B. and N. Kopell. 1986. Parabolic bursting in an excitable system coupled with a slow oscillation.SIAM J. Appl. Math. 46, 233–253.MATHMathSciNetCrossRefGoogle Scholar
  16. FitzHugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane.Biophys. J. 1, 445–466.Google Scholar
  17. Gear, C. 1967. The numerical integration of ordinary differential equations.Math. Comp. 21, 146–156.MATHMathSciNetCrossRefGoogle Scholar
  18. Guckenheimer, J. 1986. Multiple bifurcation problems for chemical reactions.Physica 20D, 1–20.MathSciNetGoogle Scholar
  19. Guckenheimer, J. and P. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, pp. 353–423. Berlin: Springer.MATHGoogle Scholar
  20. Guckenheimer, J., S. Gueron and R. M. Harris-Warrick. 1993. Mapping the dynamics of a bursting neuron.Phil. Trans. Roy. Soc. Lond. 341, 345–359.Google Scholar
  21. Harris-Warrick, R. M. and R. E. Flamm. 1987. Multiple mechanisms of bursting in a conditional bursting neuron.J. Neurosci. 7, 2113–2128.Google Scholar
  22. Hindmarsh, A. 1974. An ordinary differential equation solver. Technical report UCID-30001, Lawrence Livermore Laboratory.Google Scholar
  23. Hindmarsh, J. L. and R. M. Rose. 1984. A model of neuronal bursting using three coupled first order differential equations.Proc. R. Soc. Lond. B 221, 87–102.CrossRefGoogle Scholar
  24. Hudson, J. L., M. Hart and D. Marinko. 1979. An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 71, 1601–1606.CrossRefGoogle Scholar
  25. Johnson, S. W., V. Seutin and R. A. North. 1992. Burst firing in dopamine neurons induced by N-Methyl-D-Aspartate: role of electrogenic sodium pump.Science 258, 665–667.Google Scholar
  26. Pernarowski, M. 1994. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting.SIAM J. Appl. Math. 54, 814–832.MATHMathSciNetCrossRefGoogle Scholar
  27. Plant, R. E. and M. Kim. 1976. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations.Biophys. J. 16, 227–244.CrossRefGoogle Scholar
  28. Rinzel, J. 1985. Bursting oscillation in an excitable membrane model. InOrdinary and Partial Differential Equations, B. D. Sleeman and R. J. Jarvis (Eds), Lecture Notes in Mathematics, Vol. 1151, pp. 304–316. Berlin: Springer.Google Scholar
  29. Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology, Morphogenesis and Neurosciences, E. Teramoto and M. Yamaguti (Eds), Lecture Notes in Biomathematics, Vol. 71, pp. 267–281. Berlin: Springer.Google Scholar
  30. Rinzel, J. and Y. S. Lee. 1987. Dissection of a model for neuronal parabolic bursting.J. Math. Biol. 25, 653–675.MATHMathSciNetCrossRefGoogle Scholar
  31. Rinzel, J. and W. C. Troy. 1982. Bursting phenomena in a simplified Oregonator flow system model.J. Chem. Phys. 76, 1775–1789.MathSciNetCrossRefGoogle Scholar
  32. Rush, M. E. and J. Rinzel. 1994. Analysis of bursting in a thalamic neuron model.Biol. Cybern. 71, 281–291.MATHGoogle Scholar
  33. Schecter, S. 1987. The saddle node separatrix loop.SIAM J. Math. Anal. 18, 1142–1156.MATHMathSciNetCrossRefGoogle Scholar
  34. Sherman, A. and J. Rinzel. 1992. Rhythmogenic effects of weak electrotonic coupling in neuronal models.Proc. Natl. Acad. Sci. USA 89, 2471–2474.CrossRefGoogle Scholar
  35. Smolen, P. and J. Keizer. 1992. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic beta-cell.J. Membrane. Biol. 127, 9–19.CrossRefGoogle Scholar
  36. Smolen, P. and A. Sherman. 1994. Phase-independent resetting in relaxation and bursting oscillators.J. Theor. Biol. 169, 339–348.CrossRefGoogle Scholar
  37. Strumwasser, F. 1967. Types of information stored in single neurons. InInvertebrate Nervous Systems: Their Significance for Mammalian Neurophysiology, C. A. G. Wiersma (Ed.), pp. 290–319. Chicago: The University of Chicago Press.Google Scholar
  38. Traub, R. D., R. K. S. Wong, R. Miles and H. Michelson. 1991. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.J. Neurophysiol. 66, 635–650.Google Scholar
  39. Wang, X.-J. and J. Rinzel. 1994. Oscillatory and bursting properties of neurons. InThe Handbook of Brain Theory and Neural Networks, M. A. Arbib (Ed.). Cambridge, MA: The MIT Press.Google Scholar
  40. Wang, X.-J., J. Rinzel and M. A. Rogawski. 1991. A model of the T-type calcium current and the low-threshold spikes in the thalamic neurons.J. Neurophysiol. 66, 839–850.Google Scholar
  41. Wong, R. K. S. and D. A. Prince. 1981. Afterpotential generation in hippocampal pyramidal cells.J. Neurophysiol. 45, 86–97.Google Scholar

Copyright information

© Society for Mathematical Biology 1995

Authors and Affiliations

  • Richard Bertram
    • 1
  • Manish J. Butte
    • 2
  • Tim Kiemel
    • 3
  • Arthur Sherman
  1. 1.National Institutes of Diabetes and Digestive and Kidney Diseases, Mathematical Research BranchNational Institutes of HealthBethesdaUSA
  2. 2.Brown UniversityProvidenceUSA
  3. 3.Department of ZoologyUniversity of MarylandCollege ParkUSA

Personalised recommendations