Bulletin of Mathematical Biology

, Volume 57, Issue 3, pp 401–411 | Cite as

The stabilizing role of cannibalism in a predator-prey system

  • C. Kohlmeier
  • W. Ebenhöh
Article

Abstract

Cannibalism can have a stabilizing effect in a predator-prey system. Contrary to the intuitive expectation cannibalism of the predator leads to an increase of the standing stocks of both, prey and predator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baretta, J.et al. 1994. ERSEM.Neth. J. Sea Res. preprint.Google Scholar
  2. Breckling, B. 1985. Die Veränderbarkeit der dynamischen Verhaltensqualität des Lotka-Volterra Modells durch Einführung nichtlinearer Ergänzungen-theoretische Konsequenzen.Verhandlungen der Gesellschaft für Ökologie (Bremen 1983). Band XIII 1985.Google Scholar
  3. Den Bosch, F., A. M. van De Roos and W. Gabriel. 1988. Cannibalism as a lifeboat mechanism.J. Math. Biol. 26, 619–933.MATHMathSciNetGoogle Scholar
  4. Diekmann, O., R. M. Nisbet, W. S. C. Gurney and F. van den Bosch. 1986. Simple mathematical models for cannibalism. A critique and a new approach.Math. Biosc. 78, 21–46.MATHCrossRefGoogle Scholar
  5. Cushing, J. M. 1991. A simple model of cannibalism.Math. Biosc. 107, 47–71.MATHMathSciNetCrossRefGoogle Scholar
  6. Ebenhöh, W., C. Kohlmeier and P. Radford. 1994. Modelling benthic biology in ERSEM.Neth. J. Sea Res. preprint.Google Scholar
  7. Fraunthal, J. C. 1983. Some simple models of cannibalism.Math. Biosc. 63, 87–98.CrossRefGoogle Scholar
  8. Freedman, H. I. 1991.Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York.Google Scholar
  9. Gabriel, W. 1985a. Can cannibalism be advantageous in cyclopoids? A mathematical model.Verh. Internat. Verein. Limnol. 22, 3164–3168.Google Scholar
  10. Gabriel, W. 1985b. Overcoming food limitations by cannibalism: a model study on cyclopoids.Arch. Hydrobiol. Beih. 21, 373–381.Google Scholar
  11. Gabriel, W. 1985c. Simulation komplexer Populationsdynamik. In:Simulationstechnik, D.P.F. Möller (ed.).Informatik Fachberichte.109, 318–324.Google Scholar
  12. Gurtin, M. E. and D. S. Levine. 1982. On populations that cannibalize their young.SIAM J. Appl. Math. 42, 94–108.MATHMathSciNetCrossRefGoogle Scholar
  13. Jetschke, G. 1989.Mathematik der Selbstorganisation. Vieweg, 333pp.Google Scholar
  14. Lahndahl, H. D. and B. D. Hansen. 1975. A three stage population model with cannibalism.Bull. math. biol. 37, 11–17.CrossRefGoogle Scholar
  15. Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: Williams and Wilkens.Google Scholar
  16. Plis, G. A. 1981. The evolution and dynamics of intraspecific predation.Ann. Rev. Ecol. Syst. 12, 225–251.CrossRefGoogle Scholar
  17. REnshaw, E. 1991.Modelling Biological Populations in Space and Time. Cambridge: Cambridge University Press.Google Scholar
  18. Richter, O. 1985.Simulation des Verhaltens ökologischer Systeme. VCH, 219 pp.Google Scholar
  19. Ulanowicz, R. E. 1986.Growth and Development: Ecosystem Phenomenology, pp. 1–203. New York: Springer Verlag.Google Scholar
  20. Volterra, V. 1926. Fluctuations in the abundance of a species considered mathematically.Nature 118, 558–560.MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 1995

Authors and Affiliations

  • C. Kohlmeier
    • 1
  • W. Ebenhöh
    • 1
  1. 1.Fachbereich MathematikCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations