Bulletin of Mathematical Biology

, Volume 57, Issue 2, pp 247–276 | Cite as

Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state

  • René Thomas
  • Denis Thieffry
  • Marcelle Kaufman
Article

Abstract

In the field of biological regulation, models dictated by expreimental work are usually complex networks comprising intertwined feedback loops. In this paper the biological roles of individual positive loops (multistationarity, differentiation) and negative loops (homeostasis, with or without oscillations, buffering of gene dosage effect) are discussed. The relationship between feedback loops and steady states is then clarified, and the problem: “How can one conveniently disentangle complex networks?” is then considered. Initiated long ago, logical descriptions have been generalized from various viewpoints; these developments are briefly discussed. The recent concept of the loop-characteristic state, defined as the logical state located at the level of the thresholds involved in the loop, together with its application, are then presented. Biological applications are also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Cohn, M. and K. Horibata. 1959. Inhibition by the glucose of the induced synthesis of the β-galactoside-enzyme system ofEscherichia coli—Analysis of maintenance.J. Bacteriol. 78, 601–612.Google Scholar
  2. Delbrück, M. 1949. Discussion. In:Urités Biologiques Douées de Continuité Génétique. Editions du CNRS (Lyon), 33–34.Google Scholar
  3. Eisen, H., P. Brachet, L. Pereira da Silva and F. Jacob. 1970. Regulation of repressor expression in λ.Proc. natn. Acad. Sci. U.S.A. 66, 855–862.CrossRefGoogle Scholar
  4. Eisenfeld, J. 1987. Compatibility tests on immunological control loops.Ann. N.Y. Acad. Sci. 504, 132–150.Google Scholar
  5. Eisenfeld, J. and C. De Lisi (Eds). 1985. On conditions for qualitative instability of regulatory circuits with applications to immunological control loops. InMathematics and Computers in Biomathematical Applications, pp. 39–53. New York: Elsevier.Google Scholar
  6. Glass, L. 1975. Combinatorial and topological methods in nonlinear chemical kinetics.J. Chem. Phys. 63, 1325–1335.CrossRefGoogle Scholar
  7. Glass, L. and S. A. Kauffman. 1973. The logical analysis of continuous non-linear biochemical control networks.J. theor. Biol 39, 103–115.CrossRefGoogle Scholar
  8. Glass, L. and J. S. Pasternak. 1978. Prediction of limit cycles in mathematical models of biological oscillations.Bull. math. Biol. 40, 27–44.CrossRefGoogle Scholar
  9. Golbeter, A. 1990.Rythmes et Chaos dans les Systèmes Biochimiques et Cellulaires. Paris: Masson.Google Scholar
  10. Kauffman, S. A. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets.J. theor. Biol. 22, 437–467.MathSciNetCrossRefGoogle Scholar
  11. Kaufman, M. 1988. Role of multistability in an immune response model: a combined discrete and continuous approach. In:Theoretical Immunology, Part One, SFI Studies in the Sciences of Complexity, A. Perelson (Ed.), pp. 199–222. Redwood City, California.Google Scholar
  12. Levins, R. 1975. Evolution in communities near equilibrium. In.Ecology and Evolution of Communities, M. L. Cody and J. M. Diamond (Eds), pp. 16–50. Cambridge, MA: Harvard University Press.Google Scholar
  13. Lim, D. J., Oppenheim, T. Eckhardt and W. K. Maas. 1988. The unitary hypothesis for the repression mechanism of arginine biosynthesis inE. coli K12—revisited after 18 years. In:Gene Expression and Regulation: the Legacy of Luigi Gorini, Bissel, Deho, Sironi and Torriani (Eds.). New York: Excerpta Medica.Google Scholar
  14. May, R. M. 1973.Stability and Complexity in Model Ecosystems. Princeton, NJ: Princeton University Press.Google Scholar
  15. Novick, A. and M. Weiner. 1957. Enzyme induction as an all-or-none phenomenon.Proc. natn. Acad. Sci. U.S.A. 43, 553–566.CrossRefGoogle Scholar
  16. Plahte, E., T. Mestl and S. Omholt. 1995. Feedback loops, stability and multistationarity in dynamical system. In:Mathematics Applied to Biology and Medicine, J. Demongeot and P. Auger (Eds). Singapore: World Scientific. In press.Google Scholar
  17. Quirk, J. and R. Ruppert. 1965. Qualitative economics and the stability of equilibrium.Rev. Econ. Studies 32, 311–326.CrossRefGoogle Scholar
  18. Rosen, R. 1968. Recent developments in the theory of control and regulation of cellular processes.Int. Rev. Cytology 23, 25–88.Google Scholar
  19. Snoussi, E. H. 1989. Qualitative dynamics of piece-linear differential equations: a discrete mapping approach.Dyn. Stability Syst 4, 189–207.MATHMathSciNetGoogle Scholar
  20. Snoussi, E. H. and R. Thomas. 1993. Logical identification of all steady states: the concept of feedback loop characteristic states.Bull. math. Biol. 55, 973–991.MATHCrossRefGoogle Scholar
  21. Thieffry, D. L., M. Colet and R. Thomas. 1993. Formalization of regulatory networks: a logical method and its automatization.Math. Modelling and Sci. Computing 2, 144–151.MATHGoogle Scholar
  22. Thieffry, D., E. Verdin and M. Colet. 1993. Regulation of HIV expression: a logical analysis. In:Mathematics Applied to Biology and Medicine, Demongeot and Capasso (Eds), pp. 291–304. Winnipeg, Canada: Wuerz Publishing Ltd.Google Scholar
  23. Thieffry, D., E. H. Snoussi, J. Richelle and R. Thomas 1995. Positive loops and differentiation. In:Mathematics Applied to Biology and Medicine. J. Demongeot and P. Auger (Eds). Singapore: World Scientific. In press.Google Scholar
  24. Thomas, R. 1973. Boolean formalization of genetic control circuits.J. theor. Biol. 42, 563–585.CrossRefGoogle Scholar
  25. Thomas, R. 1978. Logical analysis of systems comprising feedback loops.J. theor. Biol. 73, 631–656.CrossRefGoogle Scholar
  26. Thomas, R. (Ed.) 1979. Kinetic logic: a Boolean approach to the analysis of complex regulatory systems.Lect. Notes Biomath.29, 507.Google Scholar
  27. Thomas, R. 1981. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In:Numerical Methods in the Study of Critical Phenomena, Della Dora, Demongeot and Lacolle (Eds), pp. 180–193. Berlin: Springer Verlag.Google Scholar
  28. Thomas, R. 1983. Logical vs continuous description of systems comprising feedback loops: the relation between time delays and parameters.Studies in Physical and Theoretical Chemistry 28, 307–321.Google Scholar
  29. Thomas, R. 1991. Regulatory networks seen as asynchronous automata: a logical description.J. theor. Biol. 153, 1–23.Google Scholar
  30. Thomas, R. 1994. The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix.Ber. Besenges. Phys. Chem. 98, 1148–1151.Google Scholar
  31. Thomas, R. and R. D'Ari. 1990.Biological Feedback. Boca Raton, Florida: CRC Press.MATHGoogle Scholar
  32. Tian, G., D. Lim, J. D. Oppenheim and W. K. Maas. 1994. Explanation for different types of regulation of arginine biosynthesis betweenEscherichia coli B andEscherichia coli K12 caused by a difference between their arginine repressors.J. Mol. Biol. 235, 221–231.CrossRefGoogle Scholar
  33. Tyson, J. 1975. Classification of instabilities in chemical reaction systems.J. Chem. Phys. 62, 1010–1015.CrossRefGoogle Scholar
  34. Van Ham, P. 1979. How to deal with more than two levels.Lect. Notes Biomath 29, 326–343.Google Scholar

Copyright information

© Society for Mathematical Biology Printed in Great Britain 1995

Authors and Affiliations

  • René Thomas
    • 1
  • Denis Thieffry
    • 1
  • Marcelle Kaufman
    • 2
  1. 1.Laboratoire de GénétiqueUniversité Libre de BruxellesRhode Saint GenèseBelgium
  2. 2.Service de Chimie-PhysiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations