Advertisement

Bulletin of Mathematical Biology

, Volume 55, Issue 1, pp 197–212 | Cite as

Orientation by helical motion—I. Kinematics of the helical motion of organisms with up to six degrees of freedom

  • Hugh C. Crenshaw
Article

Abstract

The kinematics of helical motion are descirbed for an organism treated as a rigid body with six degrees of freedom relative to the organism's frame of reference, i.e. the organism can translate in the direction of, or rotate around any of, three orthogonal axes fixed to its body. Equations are derived that express the unit vectors of the Frenet trihedron and the torsion and curvature of the trajectory in terms of the organism's translational and rotational velocities. These equations permit description of the radius, pitch, angular velocity and axis of a helical trajectory in terms of the translational and rotational velocities of the organism swimming along that trajectory. The results of this analysis are then used in two later papers that describe how organisms can orient to an external stimulus.

Keywords

Rotational Velocity Unit Normal Vector Translational Velocity Unit Tangent Vector Helical Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Berg, H. C. 1975. Chemotaxis in bacteria.A. Rev. Biophys. Bioengng 4, 119–136.CrossRefGoogle Scholar
  2. Brokaw, C. J. 1957. “Electro-chemical” orientation of bracken spermatozoids.Nature 179, 525.CrossRefGoogle Scholar
  3. Brokaw, C. J. 1958a. Chemotaxis of bracken spermatozoids. Ph.D. thesis. Cambridge University, Cambridge, U.K.Google Scholar
  4. Brokaw, C. J. 1958b. Chemotaxis of bracken spermatozoids: Implications of electrochemical orientation.J. exp. Biol. 35, 197–212.Google Scholar
  5. Brokaw, C. J. 1959. Random and oriented movements of bracken spermatozoids.J. cell. comp. Physiol. 54, 95–101.CrossRefGoogle Scholar
  6. Brokaw, C. J. 1974. Calcium and flagellar response during the chemotaxis of bracken spermatozoids.J. cell. Physiol. 83, 151–158.CrossRefGoogle Scholar
  7. Bullington, W. E. 1925. A study of spiral movement in the ciliate infusoria.Arch. Protistenk. 50, 219–275.Google Scholar
  8. Chwang, A. T. and T. Y. Wu. 1971. A note on the helical movement of micro-organisms.Proc. R. Soc. Lond. Ser. B 178, 327–346.CrossRefGoogle Scholar
  9. crenshaw, H. C. 1989. Kinematics of helical motion of microorganisms capable of motion with four degrees of freedom.Biophys. J. 56, 1029–1035. (Note correction inBiophys. J. 57, 1109).Google Scholar
  10. Crenshaw, H. C. 1990. Helical orientation: A novel mechanism for the orientation of microorganisms.Lect. Notes Biomath. 89, 361–386.Google Scholar
  11. Crenshaw, H. C. 1993. Orientation by helical motion—III. Microorganisms can orient to stimuli by changing the direction of their rotational velocity.Bull. math. Biol. 55, 231–255.zbMATHCrossRefGoogle Scholar
  12. Crenshaw, H. C. and L. Edelstein-Keshet. 1993. Orientation by helical motion—II. Changing the direction of the axis of motion.Bull. math. Biol. 55, 213–230.zbMATHCrossRefGoogle Scholar
  13. Diehn, B. 1973. Phototaxis and sensory transduction inEuglena. Science 181, 1009–1015.Google Scholar
  14. Fenchel, T. and P. R. Jonsson. 1988. The functional biology ofStrombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina).Mar. Ecol. Prog. Ser. 48, 1–15.Google Scholar
  15. Foster, K. W. and R. D. Smyth. 1980. Light antennas in phototactic algae.Microbiol. Rev. 44, 572–630.Google Scholar
  16. Gillett, P. 1984.Calculus and Analytic Geometry, 2nd edn, 915 pp. Lexington, MA: D.C. Heath.Google Scholar
  17. Goetz, A. 1970.Introduction to Differential Geometry, 350 pp. Reading, MA: Addison-Wesley.zbMATHGoogle Scholar
  18. Gray, J. 1955. The movement of sea-urchin spermatozoa.J. exp. Biol. 32, 775–801.Google Scholar
  19. Jennings, H. S. 1901. On the significance of the spiral swimming of organisms.Am. Nat. 35, 369–378.CrossRefGoogle Scholar
  20. Jennings, H. S. 1904.Contributions to the Study of the Behavior of Lower Organisms. Carnegie Institute of Washington Publication No. 16.Google Scholar
  21. Kamiya, R. and G. B. Witman. 1984. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models ofChlamydomonas.J. Cell Biol. 98, 97–107.CrossRefGoogle Scholar
  22. Keller, J. B. and S. I. Rubinow. 1976. Swimming of flagellated microorganisms.Biophys. J. 16, 151–170.CrossRefGoogle Scholar
  23. Ludwig, W. 1929. Untersuchungen über die schraubenbahnen niederer organismen.Z. vergl. Physiol. 9, 734–801.CrossRefGoogle Scholar
  24. Naitoh, Y. and K. Sugino. 1984. Ciliary movement and its control inParamecium.J. Protozool. 31, 31–40.Google Scholar
  25. Purcell, E. M. 1977. Life at low Reynolds number.Am. J. Physics. 45, 3–11.CrossRefGoogle Scholar
  26. Rüffer, U. and W. Nultsch. 1985. High-speed cinematographic analysis of the movement of Chlamydomonas.Cell Motil. 5, 251–263.CrossRefGoogle Scholar
  27. Schaeffer, A. A. 1920.Ameboid Movement, 156 pp. Princeton, NJ: Princeton University Press.Google Scholar
  28. Sugino, K. and Y. Naitoh. 1988. Estimation of ciliary activity inParamecium from its swimming path.Seitai Nō Kagaku 39(5), 485–490.Google Scholar
  29. Symon, K. R. 1971.Mechanics, 3rd edn, 639 pp. Reading, MA: Addison-Wesley.Google Scholar
  30. van Houten, J. and R. R. Preston. 1988. Chemokinesis. InParamecium, H. D. Görtz (Ed.), pp. 282–300, New York, NY: Springer-Verlag.Google Scholar

Copyright information

© Society for Mathematical Biology 1992

Authors and Affiliations

  • Hugh C. Crenshaw
    • 1
  1. 1.Department of ZoologyDuke UniversityDurhamU.S.A.

Personalised recommendations