Bulletin of Mathematical Biology

, Volume 51, Issue 4, pp 417–432 | Cite as

The multiple codes of nucleotide sequences

  • E. N. Trifonov


Nucleotide sequences carry genetic information of many different kinds, not just instructions for protein synthesis (triplet code). Several codes of nucleotide sequences are discussed including: (1) the translation framing code, responsible for correct triplet counting by the ribosome during protein synthesis; (2) the chromatin code, which provides instructions on appropriate placement of nucleosomes along the DNA molecules and their spatial arrangement; (3) a putative loop code for single-stranded RNA-protein interactions. The codes are degenerate and corresponding messages are not only interspersed but actually overlap, so that some nucleotides belong to several messages simultaneously. Tandemly repeated sequences frequently considered as functionless “junk” are found to be grouped into certain classes of repeat unit lengths. This indicates some functional involvement of these sequences. A hypothesis is formulated according to which the tandem repeats are given the role of weak enhancer-silencers that modulate, in a copy number-dependent way, the expression of proximal genes. Fast amplification and elimination of the repeats provides an attractive mechanism of species adaptation to a rapidly changing environment.


Tandem Repeat Protein Code Sequence Positional Distribution Multiple Code Cold Spring Harbour Syrup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arques, D. G. and C. J. Michel. 1987. “A Purine-Pyrimidine Motif Verifying an Identical Presence in Almost All Gene Taxonomic Groups,”J. theor. Biol.,128, 457–461.Google Scholar
  2. Atkins, J. F., D. Elseviers and L. Gorini. 1972. “Low Activity of Beta-Galactosidase in Frameshift Mutants ofEscherichia coli.”Proc. natl. Acad. Sci. U.S.A.,69, 1192–1195.CrossRefGoogle Scholar
  3. Beckmann, J. S., V. Brendel and E. N. Trifonov. 1986. “Intervening Sequences Exhibit Distinct Vocabulary.”J. Biomolec. Struct. Dynamics,4, 391–400.Google Scholar
  4. Bernardi, G., B. Olofsson, J. Filipski, M. Zerial, J. Salinas, G. Cuny, M. Meunier-Rotival and F. Rodier. 1985. “The Mosaic Genome of Warm-Blooded Vertebrates.”Science 228, 953–957.Google Scholar
  5. Blaisdell, B. E., 1983. “A Prevalent, Persistent Global Nonrandomness that Distinguishes Coding and Non-Coding Eukaryotic Nuclear DNA Sequences.”J. molec. Evol.,19, 122–133.CrossRefGoogle Scholar
  6. Breathnach, R. and P. Chambon. 1981. “Organization and Expression of Eucaryotic Split Genes Coding for Proteins.”Ann. Rev. Biochem. 50, 349–383.CrossRefGoogle Scholar
  7. Brendel, V., J. S. Beckmann and E. N. Trifonov. 1986. “Linguistics of Nucleotide Sequences: Morphology and Comparison of Vocabularies.”J. Biomolec. Struct. Dynamics 4, 11–21.Google Scholar
  8. Bullock, P., J. Miller and M. Botchan. 1986. “Effects of Poly{d(pGpT)·d(pApC)} and Poly}d(pCpG)·d(pCpG)} Repeats on Homologous Recombination in Somatic Cells.”Molec. Cell. Biol. 6, 3948–3953.Google Scholar
  9. Claverie, J.-M. and L. Bougueleret. 1986. “Heuristic Informational Analysis of Sequences.”Nucl. Acids Res.,14, 179–196.Google Scholar
  10. Cold Spring Harbour Symp. Quant. Biol. 42, Pt. 1. 1977.Google Scholar
  11. Craigen, W. J. and T. Caskey. 1986. “Expression of Peptide, Chain Release Factor 2 Requires High-Efficiency Frameshift.”Nature 322, 273–275.CrossRefGoogle Scholar
  12. Doolittle, W. F. and C. Sapienza. 1980. “Selfish Genes, the Phenotype Paradigm and Genome Evolution.”Nature 284, 601–603.CrossRefGoogle Scholar
  13. Dover, G. 1980. “Ignorant DNA?”Nature 285, 618–620.CrossRefGoogle Scholar
  14. Eisenberg, D. S., R. M. Weiss and T. C. Terwilliger. 1984. “The Hydrophobic Moment Detects Periodicity In Protein Hydrophobicity.”Proc. natl Acad. Sci. U.S.A. 81, 140–144.CrossRefGoogle Scholar
  15. Galas, D. J., M. Eggert and M. S. Waterman. 1985. “Rigorous Pattern-Recognition Methods for DNA Sequences. Analysis of Promoter Sequences fromEscherichia coli.”J. molec. Biol. 186, 117–128.CrossRefGoogle Scholar
  16. Goldberg, M. 1979. Ph.D. thesis, Stanford University, Stanford, CA.Google Scholar
  17. Godson, B. R., B. G. Barrell, R. Staden and J. C. Fiddes. 1978. “Nucleotide Sequence of Bacteriophage G4 DNA.”Nature 276, 236–247.CrossRefGoogle Scholar
  18. Griffith, J., M. Bleyman, C. A. Rauch, P. A. Kitchin and P. T. Englund. 1986. “Visualization of the Bent Helix in Kinetoplast DNA by Electron Microscopy.”Cell 46, 717–724.CrossRefGoogle Scholar
  19. Hamada, H., M. Seidman, B. H. Howard and C. M. Gorman. 1984. “Enhanced Gene Expression by the Poly(dT-dG)·poly(dC-dA) Sequence.”Molec. Cell. Biol.,4, 2622–2630.Google Scholar
  20. Harris, Z. 1955. “From Phoneme to Morpheme.”Language 31, 190–222.CrossRefGoogle Scholar
  21. Hsieh, C.-H. and J. D. Griffith. 1988. “The Terminus of SV40 DNA Replication and Transcription Contains a Sharp Sequence-Directed Curve.Cell 52, 535–544.CrossRefGoogle Scholar
  22. Karlin, S. and G. Ghandour. 1985. “The Use of Multiple Alphabets in Kappa-Gene Immunoglobulin DNA Sequence Comparisons.”EMBO J. 4, 1217–1223.Google Scholar
  23. Konopka, K. L., J. Reiter, M. Jung, D. A. Zarling and T. M. Jovin. 1985. “Concordance of Experimentally Mapped or Predicted Z-DNA Sites with Positions of Selected Alternating Purine-Pyrimidine Tracts.”Nucl. Acids Res. 13, 1683–1701.Google Scholar
  24. Kozak, M. 1987. “An Analysis of 5′-Noncoding Sequences from 699 Vertebrate Messenger RNAs.”Nucl. Acids Res. 15, 8125–8148.Google Scholar
  25. Marini, J. C., S. D. Levene, D. M. Crothers and P. T. Engluind. 1982. “Bent Helical Structure in Kinetoplast DNA.”Proc. natl. Acad. Sci. U.S.A. 79, 7664–7668.CrossRefGoogle Scholar
  26. Maxam, A. and W. Gilbert. 1980. “Sequencing End-Labeled DNA with Base Specific Chemical Cleavages.”Meth. Enzymol. 65, 499–560.Google Scholar
  27. Mazrimas, J. A. and F. T. Hatch. 1972. “A Possible Relationship Between Satellite DNA and the Evolution of Kangaroo rat Species (GenusDipodomys)”Nature, New Biol. 240, 102–105.CrossRefGoogle Scholar
  28. Mengeritsky, G. and E. N. Trifonov. 1983. “Nucleotide Sequence-directed Mapping of the Nucleosomes.”Nucl. Acids Res. 11, 3833–3851.Google Scholar
  29. Miklos, G. L. G. 1985. “Localized Highly Repetitive DNA Sequences in Vertebrate and Invertebrate Genomes.” InMolecular Evolutionary Genetics, R. J. MacIntyre (Ed.), pp. 241–321. New York: Plenum Press.Google Scholar
  30. Mirkin, S. M., V. I. Lyamichev, K. N. Drushlyak, V. N. Dobrynin, S. A. Filippov and M. D. Frank-Kamenetskii. 1987. “DNA H Form Requires a Homopurine-Homopyrimidine Mirror Repeat.”Nature 330, 495–497.CrossRefGoogle Scholar
  31. Nirenberg, M. W., O. W. Jones, P. Leder, B. F. C. Clark, W. S. Sly and S. Pestka. 1963. “On the Coding of Genetic Information.”Cold Spring Harbour Symp. Quant. Biol.,28, 549–557.Google Scholar
  32. Noll, M., S. Zimmer, A. Engel and J. Dubochet. 1980. “Self-Assembly of Single and Closely Spaced Nucleosome Core Particles.”Nucl. Acids. Res. 8, 21–42.Google Scholar
  33. Normark, S., S. Bergstrom, T. Edlund, T. Grundstrom, B. Jaurin, F. P. Lindberg and O. Olsson. 1983. “Overlapping Genes”Ann. Rev. Genet. 17, 499–525.CrossRefGoogle Scholar
  34. Nucleotide Sequences 1987. A Compilation from the GenBank and EMBL Data Libraries. 1987. Washington: IRL Press.Google Scholar
  35. Ohno, S. 1970. “So Much ‘Junk’ DNA in Our Genome.” InEvolution of Genetic Systems, Vol. 23, H. H. Smith (Ed.), pp. 366–370. New York: Gordon and Breach.Google Scholar
  36. Ohshima, Y. and Y. Gotoh. 1987. “Signals for the Selection of a Splice Site in pre-mRNA. Computer Analysis of Splice Junction Sequences and Like Sequences.”J. molec. Biol. 195, 247–259.CrossRefGoogle Scholar
  37. Olson, W. K., M. H. Sarma, R. H. Sarma and M. Sundaralingam (Eds). 1988.Structure and Expression. Vol. 3: DNA Bending and Curvature. New York: Adenine Press.Google Scholar
  38. Orgel, L. E. and F. H. C. Crick. 1980. “Selfish DNA: the Ultimate Parasite.”Nature,284, 604–607.CrossRefGoogle Scholar
  39. Peterson, R. C., J. L. Doering and D. D. Brown. 1980. “Characterization of Two Xenopus Somatic 5S DNAs and One Minor Oocyte-Specific 5S DNA.”Cell 20, 131–141.CrossRefGoogle Scholar
  40. Pribnow, D. 1979. “Genetic Control Signals in DNA.” InBiological Regulation and Development, R. F. Goldberger (Ed.), pp. 219–278. New York: Plenum Press.Google Scholar
  41. Proudfoot, N. and G. G. Brownlee. 1976. “3′ Non-coding Region Sequences in Eukaryotic Messenger RNA.”Nature 263, 211–214.CrossRefGoogle Scholar
  42. Reddy, V. B., B. Thimmappaya, R. Dhar, K. N. Subramanian, B. S. Zain, J. Pan, P. K. Ghosh, M. L. Celma and S. M. Weissman. 1978. “The Genome of Simian Virus 40.”Science 200, 494–502.Google Scholar
  43. Sanger, F., S. Nicklen and A. R. Coulson. 1977. “DNA Sequencing with Chain-terminating Inhibitors.”Proc. natn. Acad. Sci. U.S.A. 74 5463–5467.CrossRefGoogle Scholar
  44. Satchwell, S. C., H. R. Drew and A. A. Travers. 1986. “Sequence Periodicities in Chicken Nucleosome Core DNA.”J. molec. Biol.,191, 659–675.CrossRefGoogle Scholar
  45. Sharp, P. A. 1987. “Splicing of Messenger RNA Precursors.”Science 235 766–771.Google Scholar
  46. Singer, M. F. 1982. “Highly Repeated Sequences in Mammalian Genomes.”Int. Rev. Cytol. 76, 67–112.CrossRefGoogle Scholar
  47. Speyer, J. F., P. Lengyel, C. Basilio, A. J. Wahba, R. S. Gardner and S. Ochoa 1963. “Synthetic Polynucleotides and Amino Acid Code.”Cold Spr. Harbour Symp. Quant. Biol. 28, 559–567.Google Scholar
  48. Thoma, F., L. W. Bergman and R. T. Simpson. 1984. “Nuclease Digestion of Circular TRP1ARS1 Chromatin Reveals Positioned Nucleosomes Separated by Nuclease-Sensitive Regions.”J. molec. Biol. 177, 715–733.CrossRefGoogle Scholar
  49. Trifonov, E. N. 1980. “Sequence-Dependent Deformational Anisotropy of Chromatin DNA.”Nucl. Acids. Res. 8, 4041–4053.Google Scholar
  50. —. 1983a. “Nucleosomal DNA Structure.” InNucleic Acids: The Vectors of Life, B. Pullman and J. Jortner (Eds), pp. 373–385. Dordrecht: Reidel.Google Scholar
  51. —. 1983b. “Sequence-Dependent Variations of B-DNA Structure and Protein-DNA Recognition.”Cold Spring Harbour Symp. Quant. Biol. 47, 271–278.Google Scholar
  52. — 1984. “Construction of an Algorithm for Locating Splicing Junctions.”CODATA Bull. 56, 17–20.Google Scholar
  53. — 1987. “Translation Framing Code and Frame-Monitoring Mechanism as Suggested by the Analysis of mRNA and 16S rRNA Nucleotide Sequences.”J. molec. Biol. 194, 643–652.CrossRefGoogle Scholar
  54. — and V. Brendel. 1986.Gnomic—A Dictionary of Genetic Codes. Rehovot, PA: Balaban.Google Scholar
  55. Trifonov, E. N. and V. Brendel.Gnomic—a Dictionary of Genetic Codes (2nd Edn). Verlag Chemie, in preparation.Google Scholar
  56. — and G. Mengeritsky. 1988. “Bent DNA in Chromatin Versus Free Curved DNA.” InStructure and Expression. Vol. 3: DNA Bending and Curvature, W. K. Olson, M. H. Sarma, R. H. Sarma and M. Sundaralingam (Eds), pp. 159–167. New York: Adenine Press.Google Scholar
  57. — and J. L. Sussman. 1980. “The Pitch of Chromatin DNA is Reflected in its Nucleotide Sequence.”Proc. natl Acad. Sci. U.S.A. 77, 3816–3820.CrossRefGoogle Scholar
  58. — and L. E. Ulanovsky. 1987. “Inherently Curved DNA and its Structural Elements.” InUnusual DNA Structures, R. D. Wells and S. C. Harvey (Eds), pp. 173–187. New York: Springer.Google Scholar
  59. Tschumper, G. and J. Carbon. 1980. “Sequence of a Yeast DNA Fragment Containing a Chromosomal Replicator and the TRP1 Gene.”Gene 10, 157–166.CrossRefGoogle Scholar
  60. Ulanovsky, L. E., M. Bodner, E. N. Trifonov and M. Choder. 1986. “Curved DNA: Design, Synthesis and Circularization.”Proc. natl Acad. Sci. U.S.A. 83, 862–866.CrossRefGoogle Scholar
  61. — and E. N. Trifonov. 1986. “A Different View Point on the Chromatin High Order Structure: Steric Exclusion Effects.” InBiomolecular Stereodynamics III, R. H. Sarma and M. H. Sarma (Eds), pp. 35–44. New York: Adenine Press.Google Scholar
  62. — and —. 1987. “Estimation of Wedge Components in Curved DNA.”Nature 326, 720–722.CrossRefGoogle Scholar
  63. von Heijne, G. 1987.Sequence Analysis in Molecular Biology—Treasure Trove or Trivial Pursuit. New York: Academic Press.Google Scholar
  64. Watanabe, S. and K. Yoshiike. 1985. “Decreasing the Number of 68-base-pair Tandem Repeats in the BK Virus Transcriptional Control Region Reduces Plaque Size and Enhances Transforming Capacity.”J. Virol.55, 823–825.Google Scholar
  65. Wei, R., H. Wilkinson, K. Pfeifer, C. Schneider, R. Young and L. Guarente. 1986. “Two or More Copies of Drosophila Heat Shock Consensus Sequence Serve to Activate Transcription in Yeast.”Nucl. Acids Res. 14, 8183–8188.Google Scholar
  66. Weiss, R. B., D. M. Dunn, A. E. Dahlberg, J. F. Atkins and R. F. Gesteland. 1988. “Reading Frame Switch Caused by Base-Pair Formation Between the 3′-End of 16S rRNA and the mRNA During Elongation of Protein Synthesis inEscherichia coli.”EMBO J. 7, 1503–1507.Google Scholar
  67. Zhang, K., W. F. Bosron and H. J. Edenberg. 1987. “Structure of the Mouse Adh-1 Gene and identification of a Deletion in a Long Alternating Purino-Pyrimidine Sequence in the First Intron of Strains Expressing Low Alcohol Dehydrogenase Activity.”Gene 57, 27–36.CrossRefGoogle Scholar
  68. Zuckerkandl, E. 1986. “Polite DNA: Functional Density and Functional Compatibility in Genomes.”J. molec. Evol. 24, 12–27.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1989

Authors and Affiliations

  • E. N. Trifonov
    • 1
  1. 1.Department of Polymer ResearchThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations