Bulletin of Mathematical Biology

, Volume 49, Issue 1, pp 13–50 | Cite as

Hierarchical evolutive systems: A mathematical model for complex systems

  • A. C. Ehresmann
  • J. -P. Vanbremeersch


The notion of an evolutive hierarchical system proposed in this paper is a mathematical model for systems, like organisms, with more or less complex objects. This model, based on category theory, retains the following characteristics of natural systems: they have an internal organization consisting of components with interrelations; they maintain their organization in time though their components are changing; their components are divided into several levels corresponding to the increasing complexity of their own organization, and the system may be studied at any of these levels (e.g. molecular, cellular...). The state of the system at a given instant is modeled by a category whose objects are its components, the state transition by a functor, a complex object by the (direct) limit of a pattern of linked objects (which describes its internal organization). The properties of limits in a category make it possible to ‘measure’ the emergence of properties for a complex object with respect to its components, and to reduce the study of a hierarchical system to that of its components of the lowest degree and their links. Categorical constructions describe the formation of a hierarchical evolutive system stepwise, by means of the operations: absorption of external objects, destruction of some components, formation of new complex objects.


Evolutive System Complex Object Complex Component Hierarchical System Specific Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amari, S. and M. A. Arbib. 1977. “Competition and Cooperation in Neural Nets.” InSystems Neuroscience, J. Metzler (Ed.), pp. 119–165. New York: Academic Press.Google Scholar
  2. — and Takeuchi, A. 1978. “Mathematical Theory on Formation of Category Detecting Nerve Cells”Biol. Cybernet. 29, 127–136.MATHMathSciNetCrossRefGoogle Scholar
  3. Arbid, M. A. 1966. “Categories of (M, R)-system”.Bull. math. Biol. 28, 511–517.Google Scholar
  4. Atlan, M. 1979.L'Organisation Biologique et la Théorie de l'Information. Paris: Hermann.Google Scholar
  5. Auger, P. 1983. “Hierarchically Organized Populations: Interaction between Individual, Population and Ecosystem Levels.”Math. Biosci. 65, 269–289.MATHCrossRefGoogle Scholar
  6. Baianu, I. C. 1970. “Organismic Supercategories: II. On Multistable Systems.”Bull. math. Biophys. 32, 539–561.MATHMathSciNetGoogle Scholar
  7. —. 1971. “Organismic Supercategories and Qualitative Dynamics of Systems.”Bull. math. Biophys. 33, 339–354.MATHGoogle Scholar
  8. — 1973. “Some Algebraic Properties of (M, R)-systems.”Bull. math. Biol. 35, 213–217.MATHMathSciNetCrossRefGoogle Scholar
  9. — and Marinescu, M. 1974. “A Functorial Construction of (M, R)-systems.”Revue Roum. Math. Pures Appl. 19, 389–391.MATHMathSciNetGoogle Scholar
  10. Bastiani (-Ehresmann), A. 1963.Systèmes Guidables et Problèmes d'Optimisation, Rapports I, II, III, IV. Université de Caen.Google Scholar
  11. Bateson, G. 1985.La Nature et la Pensée. Paris: Editions Seuil.Google Scholar
  12. Bertalanffy, L. von. 1926.Roux' Archiv. 108.Google Scholar
  13. —. 1956.Les Problème de la Vie. Paris: Gallimard.Google Scholar
  14. Changeux, J.-P. 1983.L'Homme Neuronal. Paris: Fayard.Google Scholar
  15. —, Danchin, A. and Courrèges, P. 1973. “A Theory of the Epigenesis of Neuronal Networks by Selective Stabilization of synapses.”Proc. natn. Acad. Sci. U.S.A. 70, 2974–2978.MATHCrossRefGoogle Scholar
  16. Demetrius, L. A. 1966. “Abstract Biological Systems as Sequential Machines: Behavorial Reversbility.”Bull. math. Biophys. 28, 153–160.MATHGoogle Scholar
  17. Ehresmann, A. C. 1983. “Comments on Part IV-I”. In:Charles Ehresmann: Oeuvres Complètes et Commentées, Part IV, pp. 323–395. Amiens.Google Scholar
  18. — and Ehresmann, C. 1972. “Categories of Sketched Structures.”Cah. Top. Géom. Diff.,XIII-2, 105–214.MathSciNetGoogle Scholar
  19. — and Vanbremeerch, J. P. 1986. “Un modèle mathematique pour le Systèmes Vivants, basé sur la Théorie des Catégories.”C. R. Acad. Sci. Paris 302, Série III, 475–478.Google Scholar
  20. Ehresmann, C. 1965.Categories et Structures. Paris: Dunod.MATHGoogle Scholar
  21. Eilenberg, S. and MacLane, S. 1945. “General Theory of Natural Equaivalences.”Trans. Am. math. Soc. 58, 231–294.MATHMathSciNetCrossRefGoogle Scholar
  22. Foerster, H. von. 1959. “On Self-organizing Systems and their Environment.” In:Selforganizing Systems, Yoritz and Cameron (Eds), pp. 31–50, New York: Pergamon Press.Google Scholar
  23. Gray, J. W. 1966 “Fibred and Cofibred Categories.”Proceedings Conference on Categorical Algebra at La Jolla, 1965, pp. 21–83. New York: Springer.Google Scholar
  24. Jacob, F. 1970La Logique du Vivant. Paris: Gallimard.Google Scholar
  25. Kan, D. M. 1958. “Adjoint Functors.”Trans. Am. math. Soc. 89, 294–329.MathSciNetCrossRefGoogle Scholar
  26. Koestler, A. 1965Le Cri d'Archimède. Paris: Calmann-Levy.Google Scholar
  27. Laborit, H. 1983.La Colombe Assassinée: Paris: Grasset.Google Scholar
  28. Lawvere, F. W. 1965. “Metric Spaces, Generalized Logic, and Closed Categories.”Rc. Semin. mat. fis. Milano.Google Scholar
  29. — 1980. “Toward the Description in a Smooth Topos of the Dynamically Possible Motions and Deformations of a Continuous Body.”Cah. Top. Géom. Diff. XXI-4, 377–392.MathSciNetGoogle Scholar
  30. Lindenmayer, A. H. 1968. “Mathematical Models for Cellular Interactions in Development. Parts I and II.”J. theor. Biol. 18, 280–315.CrossRefGoogle Scholar
  31. Louie, A. H. 1983. “Categorical System Theory and the Phenomenological Calculus.”Bull. math. Biol. 45, 1029–1045. (b) “Categorical System Theory.”Bull. Math. Biol. 45, 1047–1072.MATHMathSciNetGoogle Scholar
  32. MacLane, S. 1971.Categories for the Working Mathematician. New York: Springer.Google Scholar
  33. Mink'o, A. A. and Petunin, Yu. I. 1981. “Mathematical Modeling of Short-term Memory.” Kibernetika2, 282–297.Google Scholar
  34. Morin, E. 1977.La Méthode. Paris: Editions Seuil.Google Scholar
  35. Nelson, P. 1978.La Logique des Neurones et du Système Nerveux. Paris: Maloine.Google Scholar
  36. Piaget, J. 1967.Biologie et Connaissance. Paris: Gallimard.Google Scholar
  37. Rapoport, A. 1947. “Mathematical Theory of Motivational Interaction of Two Individuals.” Parts I and II.Bull. math. Biophys. 9, 17–28 and 41–61.Google Scholar
  38. Rashevsky, N. 1967. “Organismic Sets. Outline of a General Theory of Biological and Sociological Organisms.”Bull. math. Biophys. 29, 139–152.MATHGoogle Scholar
  39. — 1968. “Organismic Sets II. Some General Considerations.”Bull. math. Biophys. 30, 163–174.MATHGoogle Scholar
  40. Rosen, R. 1958. “The Representation of Biological Systems from the Standpoint of the Theory of Categories.”Bull. math. Biophys. 20, 245–260. (b) “A Relational Theory of Biological Systems.”Bull. math. Biophys. 20, 317–341.MathSciNetGoogle Scholar
  41. — 1959. “A Relational Theory of Biological Systems II.”Bull. math. Biophys. 21, 109–128.MathSciNetGoogle Scholar
  42. — 1969. “Hierarchical Organization in Automata Theoretic Models of the Central Nervous System.” In:Information Processing in the Nervous System, pp. 21–35. New York: Springer.Google Scholar
  43. — 1972. “Some Relational Cell Models: the Metabolic-Repair System.” In:Foundations of Mathematical Biology, Vol. 2, pp. 217–253. New York: Academic Press.Google Scholar
  44. — 1978. “Feedforwards and Global System Failures: A General Mechanism for Senescence.”J. theor. Biol. 74, 579–590.CrossRefGoogle Scholar
  45. — 1980.Modelling: an Algebraic Perspective. Multigraphed. Halifax: Dalhousie University.Google Scholar
  46. — 1981. “Pattern Generation in Networks.”Progress in Theoretical Bioscience. Vol. 6, pp. 161–209. New York: Academic Press.Google Scholar
  47. — 1982.Category-theoretic Aspects of Morphogenesis, I. Multigraphed. Halifax: Dalhousie University.Google Scholar
  48. — 1983.The Role of Similarity Principles in Data Extrapolation. Multigraphed. Halifax: Dalhousie University.Google Scholar
  49. Thom, R. 1974.Modèles Mathématiques de la Morphogenèse. Paris: Union Générale d'Edition, Coll. 10/18.Google Scholar
  50. Thurstone, L. L. 1931. “The Indifference Function.”J. Soc. Psychol. 2, 139–167.CrossRefGoogle Scholar
  51. Warner, M. W. 1982. “Representations of (M, R)-systems by Categories of Automata.”Bull. math. Biol. 44, 661–668.MATHMathSciNetCrossRefGoogle Scholar
  52. Watslawick, P., Helminck Beavin J. and Jackson, D. D. 1967.Progmatics of Human Communication. New York: Norton.Google Scholar

Copyright information

© Society for Mathematical Biology 1987

Authors and Affiliations

  • A. C. Ehresmann
    • 1
  • J. -P. Vanbremeersch
    • 2
  1. 1.U.E.R. de MathématiquesUniversité de PicardieAmiensFrance
  2. 2.Centre Médical Saint-RochAmiensFrance

Personalised recommendations