Bulletin of Mathematical Biology

, Volume 50, Issue 4, pp 379–409 | Cite as

Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees

  • David J. Wollkind
  • John B. Collings
  • Jesse A. Logan
Article

Abstract

The nonlinear behavior of a particular Kolmogorov-type exploitation differential equation system assembled by May (1973,Stability and Complexity in Model Ecosystems, Princeton University Press) from predator and prey components developed by Leslie (1948,Biometrica35, 213–245) and Holling (1973,Mem. Entomol. Soc. Can.45, 1–60), respectively, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature dependent mite interaction on fruit trees. The most significant result of this analysis is that, in addition to the temperature ranges over which the single community equilibrium point of the system iseither globally stableor gives rise to a globally stable limit cycle, there can also exist a range wherein multiple stable states occur. These stable states consist of a focus (spiral point) and a limit cycle, separated from each other in the phase plane by an unstable limit cycle. The ecological implications of such metastability, hysteresis and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system and the biological control of mite populations are discussed. It is further suggested that a model of this sort which possesses a single community equilibrium point may be more useful for representing outbreak phenomena, especially in the presence of oscillations, than the non-Kolmogorov predator-prey systems possessing three community equilibrium points, two of which are stable and the other a saddle point, traditionally employed for this purpose.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Arrowsmith, D. K. and C. M. Place. 1982.Ordinary Differential Equations. London: Chapman and Hall.Google Scholar
  2. Bazykin, A. D. 1974. “Volterra's System and the Michaelis-Menten Equation”. InProblems in Mathematical Genetics, V. A. Ratner (Ed.), pp 103–142. Novosibirsk: U.S.S.R. Acad. Sci.Google Scholar
  3. Beddington, J. R., C. A. Free and J. H. Lawton. 1976. “Concepts of Stability and Resilience in Predator-Prey Models”.J. Anim. Ecol.,45, 791–816.CrossRefGoogle Scholar
  4. Berryman, A. A. 1987. “The Theory and Classification of Outbreaks”. InInsect Outbreaks, P. Barbosa and J. C. Schultz (Eds), pp. 3–30. New York: Academic Press.Google Scholar
  5. Caughley, G. 1976. “Plant-Herbivore Systems”. InTheoretical Ecology: Principles and Applications, R. M. May (Ed.), pp. 94–113. Philadelphia: W. B. Saunders.Google Scholar
  6. Danby, J. M. A. 1985.Computing Applications to Differential Equations. Reston, VA; Reston Publishing Co.Google Scholar
  7. Doedel, E. J. 1984. “The Computer-Aided Bifurcation Analysis of Predator-Prey Models”.J. math. Biol. 20, 1–14.MATHMathSciNetCrossRefGoogle Scholar
  8. Drazin, P. G. and W. H. Reid. 1981.Hydrodynamic Stability. Cambridge: Cambridge University Press.Google Scholar
  9. Fransz, H. G. 1974.The Functional Response to Prey Density in an Acarine System (Simulation Monographs). Wageningen: Pudoc.Google Scholar
  10. Hainzl, J. 1988. “Stability and Hopf Bifurcation in a Predator-Prey System with Several Parameters”.SIAM J. appl. Math. 48, 170–190.MATHMathSciNetCrossRefGoogle Scholar
  11. Harrison, G. W. 1986. “Multiple Stable Equilibria in a Predator-Prey System”.Bull. math. Biol. 41, 137–148.MathSciNetCrossRefGoogle Scholar
  12. Hassell, M. P. 1978.The Dynamics of Arthropod Predator-Prey Systems. Princeton, NJ: Princeton University Press.Google Scholar
  13. Hastings, A. and D. J. Wollkind. 1982. “Age-Structure in Predator-Prey Systems. I. A. General Model and a Specific Example”.Theor. Pop. Biol. 21, 44–56.MATHMathSciNetCrossRefGoogle Scholar
  14. Holling, C. S. 1965. “The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation”,Mem. Entomol. Soc. Can. 45, 1–60.Google Scholar
  15. —. 1973. “Resilience and Stability of Ecological Systems”.Ann. Rev. Ecol. Sys. 4, 1–23.CrossRefGoogle Scholar
  16. Huffaker, C. B., K. P. Shea and S. G. Herman. 1963. “Experimental Studies on Predation (III). Complex Dispersion and Levels of Food in an Acarine Predator-Prey Interaction”.Hilgardia 34, 305–330.Google Scholar
  17. Kareiva, P. and G. M. Odell. 1987. “Swarms of Predators Exhibit ‘Preytaxis’ if Individual Predators Use Area Restricted Search”.Am. Nat. 130, 233–270.CrossRefGoogle Scholar
  18. Kolmogorov, A. N. 1936. “Sulla Teoria di Volterra della Lotta per l'Esistenza”.Gior. Instituto Ital. Attuari 7, 74–80.MATHGoogle Scholar
  19. Leslie, P. H. 1948. “Some Further Notes on the Use of Matrices in Population Matheamtics”.Biometrica 35, 213–245.MATHMathSciNetCrossRefGoogle Scholar
  20. Logan, J. A. 1977. “Population Model of the Association ofTetranychus mcdanieli (Acarina: Tetranychidae) withMetaseiulus occidentalis (Acarina: Phytoseiidae) in the Apple Ecosystem”. Ph.D. Dissertation, Washington State University, Pullman.Google Scholar
  21. Logan, J. A. 1982. “Recent Advances and New Directions inPhytoseiid Population Models”. InRecent Advances in Knowledge of the Phytoseiidae, M. A. Hoy (Ed.), pp. 49–71. Division of Agricultural Sciences Publication 3284, University of California.Google Scholar
  22. — and D. W. Hilbert. 1983. “Modeling the Effect of Temperature on Arthropod Population System”. InAnalysis of Ecological Systems: State of the Art in Ecological Modeling, W. K. Lauenroth, G. V. Skogerboe and M. Flug (Eds), pp. 113–122. Amsterdam: Elsevier.Google Scholar
  23. —, D. J. Wollkind, S. C. Hoyt and L. K. Tanigoshi. 1976. “An Analytic Model for Description of Temperature Dependent Rate Phenomena in Arthropods”.Envir. Entomol. 5, 1130–1140.Google Scholar
  24. Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: Williams and Wilkins.Google Scholar
  25. Ludwig, D., D. D. Jones and C. S. Holling. 1978. “Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest”.J. Anim. Ecol. 47, 315–332.CrossRefGoogle Scholar
  26. May, R. M. 1973.Stability and Complexity in Model Ecosystems. Princeton NJ: Princeton University Press.Google Scholar
  27. —. 1977. “Thresholds and Breakpoints in Ecosystems with a Multiplicity of Stable States”.Nature 269, 471–477.CrossRefGoogle Scholar
  28. —. 1981. “Models for Two Interacting Populations” InTheoretical Ecology: Principles and Applications (2nd Edn), R. M. May (ed.), pp. 78–104. Oxford: Blackwell.Google Scholar
  29. Okubo, A. 1980.Diffusion and Ecological Problems: Mathematical Models. New York: Springer-Verlag.Google Scholar
  30. Plant, R. E. and M. Mangel. 1987. “Modeling and Simulation in Agricultural Pest Management”.SIAM Review 29, 235–261.MATHMathSciNetCrossRefGoogle Scholar
  31. Rescigno, A. and I. W. Richardson. 1967. “The Struggle for Life—I. Two Species”.Bull. math. Biophys. 29, 377–388.Google Scholar
  32. — and —. 1973. “The Deterministic Theory of Population Dynamics”. InFoundations of Matheamtical Biology, R. Rosen (Ed.), pp. 283–360. New York: Academic Press.Google Scholar
  33. Rosenzweig, M. L. 1971. “Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time”.Science 171, 385–387.Google Scholar
  34. Sabelis, M. W. and W. E. M. Laane. 1986. “Regional Dynamics of Spider-Mite Populations That Become Extinct Locally Because of Food Source Depletion and Predation byPhytoseidd Mites”. InDynamics of Physiologically Structured Populations, J. A. J. Metz and O. Diekmann (Eds), Lecture Notes in Biomathematics. Berlin: Springer-Verlag.Google Scholar
  35. — and J. van der Meer. 1966. “Local Dynamics of the Interaction between Predatory Mites and Two-Spotted Spider Mites”. InDynamics of Physiologically Structured Populations, J. A. J. Metz and O. Diekmann (Eds), Lecture Notes in Biomathematics. Berlin: Springer-Verlag.Google Scholar
  36. Segel, L. A. 1972. “Simplification and Scaling”.SIAM Review 14, 547–571.MATHMathSciNetCrossRefGoogle Scholar
  37. Takafuji, A., Y. Tsuda and T. Miki. 1983. “System Behavior in Predator-Prey Interaction, with Special Reference to Acarine Predator-Prey System”.Res. Popul. Ecol. Suppl.3, 75–92.Google Scholar
  38. Taylor, F. 1979. “Convergence to Stable Age Distribution in Populations of Insects”.Am. Nat. 113, 511–530.CrossRefGoogle Scholar
  39. Volterra, V. 1926. “Variazioni e Fluttuazioni del Numero d'Individui in Specie Animali Conviventi”.Mem. Acad. Lincei. 2, 31–113.Google Scholar
  40. Wangersky, P. J. 1978. “Lotka-Volterrra Population Models”.Ann. Rev. Ecol. Syst. 7, 189–218.CrossRefGoogle Scholar
  41. Wollkind, D. J. and J. A. Logan. 1978. “Temperature-Dependent Predator-Prey Mite Ecosystem on Apple Tree Foliage”.J. math. Biol. 6, 265–283.Google Scholar

Copyright information

© Society for Mathematical Biology 1988

Authors and Affiliations

  • David J. Wollkind
    • 1
  • John B. Collings
    • 1
  • Jesse A. Logan
    • 2
  1. 1.Department of Pure and Applied MathematicsWashington State UniversityPullmanUSA
  2. 2.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA

Personalised recommendations