Bulletin of Mathematical Biology

, Volume 54, Issue 4, pp 619–648 | Cite as

Complex dynamics in a model microbial system

  • Mark Kot
  • Gary S. Sayler
  • Terry W. Schultz


The forced double-Monod model (for a chemostat with a predator, a prey and periodically forced inflowing substrate) displays quasiperiodicity, phase locking, period doubling and chaotic dynamics. Stroboscopic sections reveal circle maps for the quasiperiodic regimes and noninvertible maps of the interval for the chaotic regimes. Criticality in the circle maps sets the stage for chaos in the model. This criticality may arise with an increase in the period or amplitude of forcing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M. 1981. Why microbial predators and parasites do not eliminate their prey and hosts.Ann. Rev. Microbiol. 35, 113–133.CrossRefGoogle Scholar
  2. Allen, J. 1990. Chaos and phase-locking in predator-prey models in relation to the functional response.Florida Ent. 73, 100–110.Google Scholar
  3. Arnol’d, V. I. 1965. Small denominators, I. Mappings of the circumference onto itself.Am. math. Soc. Transl. 46, 213–284.Google Scholar
  4. Andronov, A. A., E. A. Vitt and S. E. Khaiken. 1966.Theory of Oscillators. Oxford: Pergamon Press.MATHGoogle Scholar
  5. Bak, P. 1986. The devil’s staircase.Phys. Today 39, 38–45.Google Scholar
  6. Bazin, M. J., C. Curds, A. Dauppe, B. A. Owen and P. T. Saunders. 1983. Microbial predation dynamics.ACS Symposium Series 207, 253–264.Google Scholar
  7. Bellows, T. S. 1981. The descriptive properties of some models for density dependence.J. anim. Ecol. 50, 139–156.MathSciNetCrossRefGoogle Scholar
  8. Berryman, A. A. and J. A. Millstein. 1989. Are ecological systems chaotic—and if not, why not?Trends Ecol. Evol. 4, 26–28.CrossRefGoogle Scholar
  9. Butler, G. J., S. B. Hsu and P. Waltman. 1983. Coexistence of competing predators in a chemostat.J. math. Biol. 17, 133–151.MATHMathSciNetCrossRefGoogle Scholar
  10. Canale, R. P. 1970. An analysis of models describing predator-prey interaction.Biotech. Bioengng 12, 353–378.CrossRefGoogle Scholar
  11. Canale, R. P., T. D. Lustig, P. M. Kehrberger and J. E. Salo. 1973. Experimental and mathematical modeling studies of protozoan predation on bacteria.biotech. Bioengng 15, 707–728.CrossRefGoogle Scholar
  12. Caswell, H. and D. E. Weeks. 1986. Two-sex models: chaos, extinction, and other dynamic consequences of sex.Am. Nat. 128, 707–735.CrossRefGoogle Scholar
  13. Chang, S.-J., M. Wortis and J. A. Wright. 1981. Iterative properties of a one-dimensional quartic map: Critical lines and tricritical behavior.Phys. Rev. A. 24, 2669–2694.MathSciNetCrossRefGoogle Scholar
  14. Chang, S.-J., M. Wortis and J. A. Wright. 1982. Tricritical points and bifurcations in the quartic map. InNonlinear Problems: Present and Future, A. R. Bishop and D. K. Campbell (Eds), pp. 395–402. Amsterdam: North-Holland.Google Scholar
  15. Collet, P. and J. P. Eckmann. 1980.Iterated Maps on the Interval as Dynamical Systems. Basel: Birkhauser.MATHGoogle Scholar
  16. Contois, D. E. 1959. Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures.J. gen. Microbiol. 33, 40–50.Google Scholar
  17. Cunningham, A. and R. M. Nisbet. 1983. Transients and oscillations in continuous culture. InMathematics in Microbiology, M. Bazin (Ed.), pp. 77–103. London: Academic Press.Google Scholar
  18. Curds, C. R. and A. Cockburn. 1968. Studies on the growth and feeding ofTetrahymena pyriformis in axenic and monoxenic culture.J. gen. Microbiol. 54, 343–358.Google Scholar
  19. Curds, C. R. and M. J. Bazin. 1977. Protozoan predation in batch and continuous culture.Adv. aquat. Microbiol. 1, 115–176.Google Scholar
  20. Dent, V. E., M. J. Bazin and P. T. Saunders. 1976. Behaviour ofDictyostelium discoideum amoebae andEscherichia coli grown together in a chemostat culture.Arch. Microbiol. 109, 187–194.CrossRefGoogle Scholar
  21. Devaney, R. L. 1986.An Introduction to Chaotic Dynamical Systems. Menlo Park: benjamin/Cummings.MATHGoogle Scholar
  22. Drake, J. F. and H. M. Tsuchiya. 1976. Predation, onEscherichia coli byColpoda steinii.Appl. environ. Microbiol. 331, 870–874.Google Scholar
  23. Drake, J. F. and H. M. Tsuchiya. 1977. Growth kinetics ofColpoda steinii onEscherichia coli.Appl. environ. Microbiol. 34, 18–22.Google Scholar
  24. Farmer, J. D. 1985. Sensitive dependence on parameters in nonlinear dynamics.Phys. Rev. Lett. 55, 351–354.MathSciNetCrossRefGoogle Scholar
  25. Feigenbaum, M. 1978. Quantitative universality for a class of nonlinear transformations.J. stat. Phys. 19, 25–52.MATHMathSciNetCrossRefGoogle Scholar
  26. Feigenbaum, M. 1979. Universal metric properties of nonlinear transformations.J. stat. Phys. 21, 669–706.MATHMathSciNetCrossRefGoogle Scholar
  27. Feigenbaum, M. 1983. Universal behavior in nonlinear systems.Physica D 7, 16–39.MathSciNetCrossRefGoogle Scholar
  28. Fredrickson, A. G. 1983. Interactions of microbial populations in mixed culture situations.ACS Symposium Series 207, 201–227.CrossRefGoogle Scholar
  29. Gilpin, M. E. 1979. Spiral chaos in a predator-prey model.Am. Nat. 113, 306–308.MathSciNetCrossRefGoogle Scholar
  30. Glazier, J. A. and A. Libchaber. 1988. Quasi-periodicity and dynamical systems: an experimentalist’s view.IEEE Trans. Circ. Syst. 35, 790–809.MathSciNetCrossRefGoogle Scholar
  31. Graham, J. M. and R. P. Canale. 1982. Experimental and modeling studies of a four-trophic level predator-prey system.Microb. Ecol. 8, 217–232.CrossRefGoogle Scholar
  32. Grebogi, C., E. Ott and J. A. Yorke. 1983. Crises, sudden changes in chaotic attractors, and transient chaos.Physica D 7, 181–200.MathSciNetCrossRefGoogle Scholar
  33. Hassell, M. P., J. H. Lawton and R. M. May. 1976. Patterns of dynamical behavior in single-species populations.J. anim. Ecol. 45, 471–486.CrossRefGoogle Scholar
  34. Hastings, A. and T. Powell. 1992. Chaos in a three species food chain.Ecology, in press.Google Scholar
  35. Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism.Can. Ent. 91, 385–395.CrossRefGoogle Scholar
  36. Inoue, M. and H. Kamifukumoto. 1984. Scenarios leading to chaos in a forced Lotka-Volterra model.Prog. theor. Phys. 71, 930–937.MATHMathSciNetCrossRefGoogle Scholar
  37. Jacobson, M. V. 1981. Absolutely continuous invariant measure for one-parameter families of one-dimensional maps.Communs Math. Phys. 81, 39–88.CrossRefGoogle Scholar
  38. Jensen, M. H., P. Bak and T. Bohr. 1983. Complete devil’s staircase, fractal dimension, and universality of mode-locking structure in the circle map.Phys. Rev. Lett. 50, 1637–1639.CrossRefGoogle Scholar
  39. Jensen, M. H., P. Bak and T. Bohr. 1984. Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps.Phys. Rev. A 30, 1960–1969.MathSciNetCrossRefGoogle Scholar
  40. Jost, J. L., J. F. Drake, A. G. Fredrickson and J. M. Tsuchiya. 1973. Interactions ofTetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium.J. Bacteriol. 113, 834–840.Google Scholar
  41. Kaneko, K. 1986.Collapse of Tori and Genesis of Chaos in Dissipative Systems. Singapore: World Scientific.MATHGoogle Scholar
  42. Kot, M. and W. M. Schaffer. 1984. The effects of seasonality on discrete models of population growth.Theoret. popul. Biol. 26, 340–360.MATHMathSciNetCrossRefGoogle Scholar
  43. Kot, M. and W. M. Schaffer. 1986. Discrete-time growth-dispersal models.Math. Biosci. 80, 109–136.MATHMathSciNetCrossRefGoogle Scholar
  44. Kot, M., W. M. Schaffer, G. L. Truty, D. J. Graser and L. F. Olsen. 1988. Changing criteria for imposing order.Ecol. Mod. 43, 75–110.CrossRefGoogle Scholar
  45. Kuang, Y. 1989. Limit cycles in a chemostat-related model.SIAM J. appl. Math. 49, 1759–1767.MATHMathSciNetCrossRefGoogle Scholar
  46. Leven, R. W., B. P. Kock and G. S. Markman. 1987. Periodic, quasiperiodic, and chaotic motion in a forced predator-prey ecosystem. InDynamical Systems and Environmental Models, H. G. Bothe, W. Ebeling, A. B. Kurzhanski and M. Peschel (Eds), pp. 95–104. Berlin: Akademie-Verlag.Google Scholar
  47. Li, T. Y. and J. A. Yorke. 1975. Period three implies chaos.Am. math. Mon. 82, 985–992.MATHMathSciNetCrossRefGoogle Scholar
  48. May, R. M. 1972. On relationships among various types of population models.Am. Nat. 107, 46–57.CrossRefGoogle Scholar
  49. May, R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos.Science 186, 645–647.Google Scholar
  50. May, R. M. 1976. Simple mathematical models with very complicated dynamics.Nature 261, 459–467.CrossRefGoogle Scholar
  51. May, R. M. and G. F. Oster. 1976. Bifurcations and dynamic complexity in simple ecological models.Am. Nat. 110, 573–599.CrossRefGoogle Scholar
  52. May, R. M. 1979. Bifurcations and dynamic complexity in ecological systems.Annls. N.Y. Acad. Sci. 316, 517–529.MATHMathSciNetGoogle Scholar
  53. May, R. M. 1980a. Mathematical models in whaling and fisheries management. In:Some Mathematical Questions in Biology, Vol. 13, G. F. Oster (Ed.), pp. 1–64. Providence: Mathematical Society.Google Scholar
  54. May, R. M. 1980b. Nonlinear phenomena in ecology and epidemiology.Annls., N.Y. Acad. Sci.,357, 282–291.MathSciNetGoogle Scholar
  55. May, R. M. 1985. Regulation of populations with non-overlapping generations by microparasites: a purely chaotic system.Am. Nat. 125, 573–584.CrossRefGoogle Scholar
  56. Maynard Smith, J. 1968.Mathematical Ideas in Biology. Cambridge, U.K.: Cambridge University Press.Google Scholar
  57. MacKay, R. S. and C. Tresser. 1984. Transition to chaos for two-frequency systems.J. Phys. Lett. 44, L741-L746.Google Scholar
  58. Metropolis, N., M. L. Stein and P. R. Stein. 1973. On finite limit sets of transformations on the unit interval.J. Comb. Theor. 15, 25–44.MATHMathSciNetCrossRefGoogle Scholar
  59. Monod, J. 1942.Recherches sur la Croissance des Cultures Bacteriennes Paris: Hermann.Google Scholar
  60. Monod, J. 1950. La technique de culture continue; theorie et application.Annls. Inst. Pasteur 79, 390–401.Google Scholar
  61. Nisbet, R. M., A. Cunningham and W. S. C. Gurney. 1983. Endogenous metabolism and the stability of microbial predator-prey systems.Biotech. Bioengng 25, 301–306.CrossRefGoogle Scholar
  62. Olsen, L. F. 1987. Low dimensional strange attractors in epidemics of childhood diseases in Copenhagen, Denmark, InChaos in Biological Systems, H. Degn, A. V. Holden and L. F. Olsen (Eds), NATO ASI Series, Series A, Vol. 138. New York: Plenum.Google Scholar
  63. Olsen, L. F., W. M. Schaffer and G. L. Truty. 1988. Oscillations and chaos in epidemics: a nonlinear dynamics study of six childhood diseases in Copenhagen, Denmark.Theor. Popul. Biol. 33, 344–370.MATHMathSciNetCrossRefGoogle Scholar
  64. Olsen, L. F. and W. M. Schaffer. 1990. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics.Science 249, 499–504.Google Scholar
  65. Omenn, G. S. 1988.Environmental Biotechnology—Reducing Risks from Environmental Chemicals Through Biotechnology. New York: Plenum Press.Google Scholar
  66. Poincaré, H. 1892.Les Méthodes Nouvelles de la Méchanique Celeste. Paris: Gauthier-Villars.Google Scholar
  67. Pool, R. 1989a. Is it chaos, or is it just noise?.Science 243, 25–28.Google Scholar
  68. Pool, R. 1989b. Ecologists flirt with chaos.Science 243, 310–313.Google Scholar
  69. Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1988.Numerical Recipes in C. Cambridge: Cambridge University Press.MATHGoogle Scholar
  70. Proper, G. and J. C. Garver. 1966. Mass cultures of the protozoaColpoda steinii.Biotechnol. Bioengng 8, 287–296.CrossRefGoogle Scholar
  71. Ratnam, D. A., S. Pavlou and A. G. Fredrickson. 1982. Effects of attachment of bacteria to chemostat walls in a microbial predator-prey relationship.Biotech. Bioengng 24, 2675–2694.CrossRefGoogle Scholar
  72. Ricker, W. E. 1954. Stocks and recruitment.J. Fish. Res. Bd Can.,11, 559–623.Google Scholar
  73. Rodgers, T. D. 1981. Chaos in systems in population biology.Prog. theor. Biol. 6, 91–146.Google Scholar
  74. Rosenzweig, M. L. 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science 171, 385–387.Google Scholar
  75. Ruelle, D. and F. Takens. 1971. On the nature of turbulence.Communs math. Phys. 20, 167–192.MATHMathSciNetCrossRefGoogle Scholar
  76. Salt, G. W. 1967. Predation in an experimental protozoa population (Woodruffia-Paramecium).Ecol. Monogr. 37, 113–144.CrossRefGoogle Scholar
  77. Sarkovskii, A. N. 1964. Coexistence of cycles of a continuous map of a line into itself.Ukr. mat. Zh. 16, 61–71.MathSciNetGoogle Scholar
  78. Schaffer, W. M. 1985. Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology?IMA J. Math. appl. med. Biol. 2, 221–252.MATHMathSciNetGoogle Scholar
  79. Schaffer, W. M. and M. Kot. 1985. Nearly one dimensional dynamics in a simple epidemic.J. theor. Biol. 112, 403–427.MathSciNetCrossRefGoogle Scholar
  80. Schaffer, W. M. 1989. Perceiving order in the chaos of nature. InEvolution of Life Histories. M. Boyce (Ed.), pp. 313–350. New Haven: Yale University Press.Google Scholar
  81. Schaffer, W. M. and M. Kot. 1986a. Differential systems in ecology and epidemiology. InChaos, A. V. Holden (Ed.), pp. 158–178. Princeton: Princeton University Press.Google Scholar
  82. Schaffer, W. M. and M. Kot. 1986b. Chaos in ecological systems: the coals that Newcastle forgot.Trends Ecol. Evol. 1, 58–63.CrossRefGoogle Scholar
  83. Schaffer, W. M., L. F. Olsen, G. L. Truty, S. L. Fulmer and D. J. Graser. 1988. Periodic and chaotic dynamics in childhood infections. InFrom Chemical to Biological Organization. M. Markus, S. Muller and G. Nicolis (Eds), pp. 331–347. Berlin: Springer.Google Scholar
  84. Schell, M., S. Fraser and R. Kapral. 1983. Subharmonic bifurcation in the sine map: An infinite hierarchy of cusp bistabilites.Phys. Rev. A 28, 373–378.MathSciNetCrossRefGoogle Scholar
  85. Schuster, H. G. 1988.Deterministic Chaos: An Introduction. Weinheim: VCH.Google Scholar
  86. Skjolding, H., B. Branner-Jorgensen, P. L. Christiansen and H. E. Jensen. 1983. Bifurcations in discrete dynamical systems with cubic maps.SIAM J. appl. Math. 43, 520–534.MATHMathSciNetCrossRefGoogle Scholar
  87. Stefan, P. 1977. A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line.Communs Math. Phys. 54, 237–248.MATHMathSciNetCrossRefGoogle Scholar
  88. Stubbs M. 1977. Density dependence in the life-cycles of animals and its importance inK andr-strategies.J anim. Ecol. 46, 677–688.CrossRefGoogle Scholar
  89. Sudo, R., K. Kobayashi and S. Aiba. 1975. Some experiments and analysis of a predator-prey model: Interaction betweenColpidium campylum andAlcaligenes faecalis in continuous and mixed culture.Biotech. Bioengng. 17, 167–184.CrossRefGoogle Scholar
  90. Swift, S. T., I. Y. Najita, K. Ohtaguchi and A. G. Fredrickson. 1982a. Continuous culture of the ciliateTetrahymena pyriformis onEscherichia coli.Biotech. Bioengng 24, 1953–1964.CrossRefGoogle Scholar
  91. Swift, S. T., I. Y. Najita., K. Ohtaguchi and A. G. Fredrickson. 1982b. Some physiological aspects of the autecology of the suspension-feeding protozoanTetrahymena pyriformis.Microb. Ecol. 8, 201–215.CrossRefGoogle Scholar
  92. Takens, F. 1981. Detecting strange attractors in turbulence.Lect. Notes Math. 898, 366–381.MATHMathSciNetCrossRefGoogle Scholar
  93. Taylor, W. D., M. D. Gates and J. Berger. 1976. Morphological changes during the growth cycle of axenic and monoxenicTetrahymena pyriformis.Can. J. Zool. 54, 2011–2018.Google Scholar
  94. Thomas, W. R., M. J. Pomerantz and M. E. Gilpin. 1980. Chaos, asymmetric growth, and group selection for dynamical stability.Ecology 61, 1312–1320.CrossRefGoogle Scholar
  95. Thompson, J. M. T. and Stewart, H. B. 1986.Nonlinear Dynamics and Chaos. Chichester: Wiley.MATHGoogle Scholar
  96. Tsuchiya, H. M. J. F. Drake, J. L. Jost and A. G. Fredrickson. 1972. Predator-prey interactions ofDictyostelium discoideum andEscherichia coli in continuous culture.J. Bacteriol. 110, 1147–1153.Google Scholar
  97. van den Ende, P. 1973. Predator-prey interactions in continuous culture.Science 181, 562–564.Google Scholar
  98. Varon, M. and B. P. Zeigler, 1978. Bacterial predator-prey interaction at low prey density.Appl. environ. Microbiol. 36, 11–17.Google Scholar
  99. Waltman, P. 1983.Competition Models in Population Biology. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  100. Watson, P. J., O. Kazuhisa and A. G. Fredrickson. 1981. Kinetics of growth of the ciliateTetrahymena pyriformis onEscherichia coli.J. gen. Microbiol. 122, 323–333.Google Scholar

Copyright information

© Society for Mathematical Biology 1992

Authors and Affiliations

  • Mark Kot
    • 1
  • Gary S. Sayler
    • 2
  • Terry W. Schultz
    • 3
  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of Animal Science-Veterinary MedicineUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Animal Science-Veterinary MedicineUniversity of TennesseeKnoxvilleUSA

Personalised recommendations