Advertisement

Bulletin of Mathematical Biology

, Volume 52, Issue 1–2, pp 25–71 | Cite as

A quantitative description of membrane current and its application to conduction and excitation in nerve

  • A. L. Hodgkin
  • A. F. Huxley
Neurophysiology

Abstract

This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkinet al., 1952,J. Physiol. 116, 424–448; Hodgkin and Huxley, 1952,J. Physiol. 116, 449–566). Its general object is to discuss the results of the preceding papers (Section 1), to put them into mathematical form (Section 2) and to show that they will account for conduction and excitation in quantitative terms (Sections 3–6).

Keywords

Membrane Potential Positive Phase Voltage Clamp Membrane Current Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Cole, K. S. 1941. Rectification and inductance in the squid giant axon.J. gen. Physiol. 25, 29–51.CrossRefGoogle Scholar
  2. Cole, K. S. and R. F. Baker. 1941. Longitudinal impedance of the squid giant axon.J. gen Physiol. 24, 771–788.CrossRefGoogle Scholar
  3. Cole, K. S. and H. J. Curtis. 1939. Electric impedance of the squid giant axon during activity.J. gen. Physiol. 22, 649–670.CrossRefGoogle Scholar
  4. Goldman, D. E. 1943. Potential, impedance and rectitication in membranes.J. gen. Physiol. 27, 37–60.CrossRefGoogle Scholar
  5. Hartree, D. R. 1932/3. A practical method for the numerical solution of differential equations.Mem. Manchr lit. phil. Soc. 77, 91–107.Google Scholar
  6. Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle.Biol. Rev. 26, 339–409.Google Scholar
  7. Hodgkin, A. L. and A. F. Huxley. 1952a. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. 116, 449–472.Google Scholar
  8. Hodgkin, A. L. and A. F. Huxley. 1952b. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. 116, 473–496.Google Scholar
  9. Hodgkin, A. L. and A. F. Huxley. 1952c. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. 116, 497–506.Google Scholar
  10. Hodgkin, A. L., A. F. Huxley and B. Katz. 1949. Ionic currents underlying activity in the giant axon of the squid.Arch. Sci. physiol. 3, 129–150.Google Scholar
  11. Hodgkin, A. L., A. F. Huxley and B. Katz. 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.J. Physiol. 116, 424–448.Google Scholar
  12. Hodgkin, A. L. and B. Katz. 1949. The effect of temperature on the electrical activity of the giant axon of the squid.J. Physiol. 109, 240–249.Google Scholar
  13. Keynes, R. D. 1951. The ionic movements during nervous activity.J. Physiol. 114, 119–150.Google Scholar
  14. Keynes, R. D. and P. R. Lewis. 1951. The sodium and potassium content of cephalopod nerve fibres.J. Physiol. 114, 151–182.Google Scholar
  15. Lorente de Nó, R. 1947. A study of nerve physiology.Stud. Rockefeller Inst. med. Res. 131, 132.Google Scholar
  16. Pumphrey, R. J., O. H. Schmitt and J. Z. Young. 1940. Correlation of local excitability with local physiological response in the giant axon of the squid (Loligo).J. Physiol. 98, 47–72.Google Scholar

Copyright information

© Society for Mathematical Biology 1990

Authors and Affiliations

  • A. L. Hodgkin
    • 1
  • A. F. Huxley
    • 1
  1. 1.Physiological LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations