Bulletin of Mathematical Biology

, Volume 52, Issue 1–2, pp 3–23 | Cite as

Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update

  • John Rinzel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernstein, J. 1902. Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Erster Theil.Pflügers Arch. 82 521–562.CrossRefGoogle Scholar
  2. Cohen, A.H., S. Rossignol and S. Grillner (eds). 1988.Neural Control of Rhythmic Movements in Vertebrates. New York: Wiley.Google Scholar
  3. Cole, K.S. and H.J. Curtis. 1939. Electric impedance of the squid giant axon during activity.J. gen. Physiol. 22 49–670.Google Scholar
  4. Cole, K.S. 1968.Membranes, Ions, and Impulses. Berkeley, CA: University of California Press.Google Scholar
  5. Cole, K.S., R. Guttman and F. Bezanilla. 1970. Nerve excitation without threshold.Proc. natl Acad. Sci. U.S.A. 65 884–891.CrossRefGoogle Scholar
  6. Corey, D.P. 1983. Patch clamp: current excitement in membrane physiology.Neurosci. Commentar. 1 99–110.Google Scholar
  7. Curtis, H.J. and K.S. Cole. 1940. Membrane action potentials from the squid giant axons.J. cell. comp. Physiol. 15 147–157.CrossRefGoogle Scholar
  8. Degn, H., A.V. Holden and L.F. Olsen (eds.). 1987.Chaos in Biological Systems. New York: Plenum Press.Google Scholar
  9. FitzHugh, R. 1960. Thresholds and plateaus in the Hodgkin-Huxley nerve equations.J. gen. Physiol. 43 867–896.CrossRefGoogle Scholar
  10. FitzHugh, R. 1961. Impulses and physiological states in models of nerve membrane.Biophys. J. 1 445–466.Google Scholar
  11. Goldstein, S.S. and W. Rall. 1974. Changes of action potential shape and velocity for changing core conductor geometry.Biophys. J. 14 731–757.Google Scholar
  12. Guttman, R., S. Lewis and J. Rinzel. 1980. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator.J. Physiol. (London) 305 377–395.Google Scholar
  13. Hille, B., 1984.Ionic Channels of Excitable Membranes. Stamford, CT: Sinauer.Google Scholar
  14. Hodgkin, A.L. and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108 37–77.Google Scholar
  15. Hodgkin, A.L. and A.F. Huxley. 1939. Action potentials recorded from inside a nerve fibre.Nature 144 710–711.Google Scholar
  16. Hodgkin, A.L. 1976. Chance and design in electrophysiology: an informal account of certain experiments on nerve carried out between 1934 and 1952.J. Physiol. (London) 263 1–21.Google Scholar
  17. Hudspeth, A.J. and R.S. Lewis. 1988. A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog,Rana catesbeiana.J. Physiol. (London) 400 275–297.Google Scholar
  18. Huxley, A.F. 1959. Can a nerve propagate a subthreshold disturbance?.J. Physiol. (London) 148 80–81P.Google Scholar
  19. Jack, J.J.B., D. Noble and R.W. Tsein. 1975.Electric Current Flow in Excitable Cells. Oxford University Press.Google Scholar
  20. Khodorov, B.I. 1974.The Problem of Excitability; Electribility and Ionic Permeability of the Nerve Membrane. New York: Plenum Press.Google Scholar
  21. Koch, C. and I. Segey (eds). 1989.Methods in Neuronal Modeling: From Synapses to Networks. Cambridge, MA: MIT Press.Google Scholar
  22. Llinás, R.R. 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.Science 242 1654–1664.Google Scholar
  23. Nagumo, J.S., A. Arimoto and S. Yoshizawa. 1962. An active pulse transmission line simulating nerve axon.Proc. IRE 50 2061–2070.Google Scholar
  24. Rall, W. and I. Segev. 1987. Functional possibilities for synapses on dendrites and on dendritic spines. InSynaptic Function, G.M. Edelman, W.E. Gall and W.M. Cowan (eds). New York: Wiley.Google Scholar
  25. Rinzel, J. and J.B. Keller. 1973. Traveling wave solutions of a nerve conduction equation.Biophys. J. 13 1313–1337.Google Scholar
  26. Rinzel, J. 1981. Models in neurobiology. InMathematical Aspects of Physiology, F.C. Hoppensteadt (ed.):Lectures in Applied Math., Vol. 19. Providence, RI: American Mathematical Society.Google Scholar
  27. Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology, Morphogenesis, and Neurosciences, E. Teramoto and M. Yamaguti (eds):Lecture Notes in Biomathematics, Vol. 71. Berlin: Springer-Verlag.Google Scholar
  28. Sherman, A, J. Rinzel and J. Keizer. 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing.Biophys. J. 54 411–425.CrossRefGoogle Scholar
  29. Tyson, J.J. and J.P. Keener. 1988. Singular perturbation theory of traveling waves in excitable media.Physica D32 327–361.MATHMathSciNetCrossRefGoogle Scholar
  30. Winfree, A.T. 1987.When Time Breaks Down. Princeton University Press.Google Scholar

Copyright information

© Society for Mathematical Biology 1990

Authors and Affiliations

  • John Rinzel
    • 1
  1. 1.Mathematical Research Branch, NIDDK Bldg. 31, Rm. 4B-54National Institutes of HealthBethesdaUSA

Personalised recommendations