Integrodifference models for persistence in fragmented habitats

  • R. W. Van Kirk
  • M. A. Lewis


Integrodifference models of growth and dispersal are analyzed on finite domains to investigate the effects of emigration, local growth dynamics and habitat heterogeneity on population persistence. We derive the bifurcation structure for a range of population dynamics and present an approximation that allows straighforward calculation of the equilibrium populations in terms of local growth dynamics and dispersal success rates. We show how population persistence in a heterogeneous environment depends on the scale of the heterogeneity relative to the organism's characteristic dispersal distance. When organisms tend to disperse only a short distance, population persistence is dominated by local conditions in high quality patches, but when dispersal distance is relatively large, poor quality habitat exerts a greater influence.


  1. Amarasekare, P. 1994. Spatial population structure in the banner-tailed kangaroo rat,Dipodomys spectabilis.Oecologia 100, 166–176.CrossRefGoogle Scholar
  2. Anderson, M. 1991. Properties of some density-dependent integrodifference equation population models.Math. Biosci. 104, 135–157.CrossRefGoogle Scholar
  3. Anderson, P. K. 1989. Dispersal in rodents: a resident fitness hypothesis. Special Publications No. 9, American Society of Mammalogists, Provo, UT.Google Scholar
  4. Andow, D. A., P. M. Kareiva, S. A. Levin and A. Okubo. 1990. Spread of invading organisms.Landscape Ecology 4, 177–188.CrossRefGoogle Scholar
  5. Augspurger, C. K. and K. P. Hogan. 1983. Wind dispersal of fruits with variable seed numbers in a tropical tree (Lonchocarpus pentaphyllus: Leguminosae).Am. J. Botany 70, 1031–1037.CrossRefGoogle Scholar
  6. Barash, D. P. 1989.Marmots: Social Behavior and Ecology. Stanford, CA: Stanford University Press.Google Scholar
  7. Bennett, A. F., K. Henein and G. Merriam. 1994. Corridor use and the elements of corridor quality: chipmunks and fencerows in a farmland mosaic.Biological Conservation 68, 155–165.CrossRefGoogle Scholar
  8. Berger, E. M. 1983. Population genetics of marine gastropods and bivalves. InMollusca, W. D. Russell-Hunter (Ed), Vol. 6, pp. 563–596. Orlando, FL: Academic Press.Google Scholar
  9. Beverton R. J. H. and S. J. Holt, 1957. On the dynamics of exploited fish populations. Fisheries Investigations, Series 2, No. 19, Ministry of Agriculture, Fisheries and Food, London.Google Scholar
  10. Bownan, T. J. and R. J. Robel. 1977. Brood break-up, dispersal, and mortality of juvenile prairie chickens.J. Wildlife Management 41, 27–34.Google Scholar
  11. Broadbent, S. R. and D. G. Kendall. 1953. The random walk ofTrichostrongylus retortaeformis.Biometrics 9, 460–466.CrossRefGoogle Scholar
  12. Brown, J. H. 1984. On the relationship between abundance and distribution of species.Am. Naturalist 124, 225–279.CrossRefGoogle Scholar
  13. Brown, J. H. 1995.Macroecology. Chicago: University of Chicago Press.Google Scholar
  14. Carl, E. A. 1971. Population control in Arctic ground squirrels.Ecology 52, 395–413.CrossRefGoogle Scholar
  15. Cockburn, A., M. P. Scott and D. J. Scotts. 1985. Inbreeding avoidance and male-biased natal dispersal inAnteclinus spp. (Marsupiala: Dasyuridae).Animal Behaviour 33, 908–915.CrossRefGoogle Scholar
  16. Cushing, D. H. 1981.Fisheries Biology. Madison, WI: University of Wisconsin Press.Google Scholar
  17. Davis G. J. and R. W. Howe. 1992. Juvenile dispersal, limited breeding sites and the dynamics of metapopulations.Theor. Pop. Biol. 41, 184–207.MATHCrossRefGoogle Scholar
  18. Dennis, B. 1989. Allee effects: population growth, critical density, and the chance of extinction.Natural Resource Modeling 3, 481–538.MATHMathSciNetGoogle Scholar
  19. Doak, D. 1987. Spotted owls and old growth logging in the Pacific Northwest.Conservation Biol. 3, 389–396.CrossRefGoogle Scholar
  20. Doak, D. F., P. C. Marino and P. M. Kareiva. 1992. Spatial scale mediates the influence of habitat fragmentation.Theor. Pop. Biol. 41, 315–336.CrossRefGoogle Scholar
  21. Dobson F. S. 1979. An experimental study of dispersal in the California ground squirrel.Ecology 60 1103–1109.CrossRefGoogle Scholar
  22. Doedel E., X. Wang and T. Fairgrieve. 1994. Software for continuation and bifurcation problems in ordinary differential equations. Technical report, California Institute of Technology, Pasadena, CA.Google Scholar
  23. Dunning J. B., B. J. Danielson and H. R. Pulliam. 1992. Ecological processes that affect populations in complex landscapes.Oikos 65, 169–175.Google Scholar
  24. Eastham M. S. P. 1973.The Spectral Theory of Periodic Differential Equations. Edinburgh: Scottish Academic PressMATHGoogle Scholar
  25. Fleming T. H. 1979.Ecology of Small Mammals. New York: Wiley.Google Scholar
  26. Flowerdew J. R. 1987.Mammals Their Reproductive Biology and Population Ecology. London: Edward Arnold Ltd.Google Scholar
  27. Forrest S. C., D. E. Biggins, L. Richardson, T. W. Clark, T. M. CampbellIII, K. A. Fagerstone and E. T. Thorne. 1988. Population attributes for the black-footed ferret (Mustela nigripes) at Meeteetse, Wyoming.J. Mammalogy 69, 261–273.CrossRefGoogle Scholar
  28. Forsman E. D., E. C. Meslow and H. M. Wright. 1984. Distribution and biology of the spotted owl in Oregon.Wildlife Monographs 87, 1–64.Google Scholar
  29. Freedman H. I., J. B. Shukla and Y. Takeuchi. 1989 Population diffusion in a two-patch environment.Math. Biosci..95, 111–123.MATHMathSciNetCrossRefGoogle Scholar
  30. Gaines M. S. and L. R. Mc ClenaghanJr. 1980. Dispersal in small mammals.Ann. Rev. Ecology and Systematics 11, 163–196.CrossRefGoogle Scholar
  31. Greenwood P. J. 1980. Mating systems, Philopatry and dispersal in birds and mammals.Animal Behaviour 28, 1140–1162.CrossRefGoogle Scholar
  32. Greenwood P. J. and P. H. Harvey. 1982. The natal and breeding dispersal of birds.Ann. Rev. Ecology and Systematics 13, 1–21.CrossRefGoogle Scholar
  33. Gurney W. S. C. and R. M. Nisbet. 1975. The regulation of inhomogeneous populations.J. Theor. Biol. 52, 441–457.CrossRefGoogle Scholar
  34. Hanski I. and D. Zhang. 1993. Migration, metapopulation dynamics and fugitive co-existence.J. Theor. Biol. 163, 491–514.CrossRefGoogle Scholar
  35. Hansson L. 1991. Dispersal and connectivity in metapopulations.Biol. J. Linnean Soc. 42, 89–103.Google Scholar
  36. Harcourt D. G. 1971. Population dynamics ofLeptinitarsa decemlineata (Say) in eastern Ontario. III. Major population processes.Canad. Entomologist 103, 1049–1061.CrossRefGoogle Scholar
  37. Hardin D. P., P. Takac and G. F. Webb. 1988a. Asymptotic properties of a continuous-space discrete-time population model in a random environment.J. Math. Biol. 26 361–374.MATHMathSciNetGoogle Scholar
  38. Hardin D. P., P. Takac and G. F. Webb. 1988b. A comparison of dispersal strategies for survival of spatially heterogeneous populations.SIAM J. Appl. Math. 48, 1396–1423.MATHMathSciNetCrossRefGoogle Scholar
  39. Hardin D. P., P. Takac and G. F. Webb. 1990. Dispersion population models discrete in time and continuous in space.J. Math. Biol. 28, 1–20.MATHMathSciNetCrossRefGoogle Scholar
  40. Harris L. 1984.The Fragmented Forest: Island Biogeography Theory and the Preservation of Biotic Diversity. Chicago: University of Chicago Press.Google Scholar
  41. Harris L. D. 1988. Edge effects and conservation of biotic diversity.Conservation Biol. 2, 330–332.CrossRefGoogle Scholar
  42. Hastings A. and K. Higgins. 1994. Persistence of transients in spatially structured ecological models.Science 263, 1133–1136.Google Scholar
  43. Henderson M. T., G. Merriam and J. Wegner. 1985. Patchy environments and species survival: chipmunks in an agricultural mosaic.Biol. Conservation 31, 95–105.CrossRefGoogle Scholar
  44. Hengeveld R. 1990.Dynamic Biogeography. Cambridge: Cambridge University Press.Google Scholar
  45. Hengeveld R. and J. Haeck. 1982. The distribution of abundance. I. Measurements.J. Biogeography 9, 303–316.CrossRefGoogle Scholar
  46. Hobbs R. C., L. W. Botsford and A. Thomas. 1992. Influence of hydrographic conditions and wind forcing on the distribution and abundance of Dungeness crabCancer magister farvae.Canad. J. Fisheries Aquatic Sci. 49, 1379–1388CrossRefGoogle Scholar
  47. Holmes E. E., M. A. Lewis, J. E. Banks and R. R. Veit. 1994. Partial differential equations in ecology spatial interactions and population dynamics.Ecology 75, 18–29.CrossRefGoogle Scholar
  48. Hoogland J. L. 1982. Prairie dogs avoid extreme inbreeding.Science 215, 1639–1641.Google Scholar
  49. Howard W. E. 1960. Innate and environmental dispersal of individual vertebrates.Am. Midland Naturalist 63, 152–161.CrossRefGoogle Scholar
  50. Howe H. F. and J. Smallwood. 1982. Ecology of seed dispersal.Ann. Rev. Ecology and Systematics 13, 201–228.CrossRefGoogle Scholar
  51. Howe R. W., G. J. Davis and V. Mosca. 1991. The demographic significance of “sink” populations.Biol. Conservation 57, 239–255.CrossRefGoogle Scholar
  52. Janzen, D. H. 1983. No park is an island: increase in interference from outside as park size decreases.Oikos 41, 402–410.Google Scholar
  53. Janzen D. H. 1986. The eternal external threat. InConservation Biology: The Science of Scarcity and Diversity, M. E. Soule (Ed), pp. 286–303. Sunderland, MA: Sinauer Associates.Google Scholar
  54. Jenkins D., A. Watson and G. R. Miller. 1964. Predation and red grouse populations.J. Appl. Ecol. 1, 183–195.CrossRefGoogle Scholar
  55. Johnson M. and M. S. Gaines. 1990. Evolution of dispersal: theoretical models and empirical tests using birds and mammals.Ann. Rev. Ecology and Systematics 21, 449–480.CrossRefGoogle Scholar
  56. Kadmon R. and A. Shmida. 1990. Spatiotemporal demographic processes in plant populations: an approach and a case study.Am. Naturalist 135, 382–397.CrossRefGoogle Scholar
  57. Keppie D. M. 1979. Dispersal, overwinter mortality and recruitment of spruce grouse.J. Wildlife Management 43, 717–727.Google Scholar
  58. Kot M. 1989. Diffusion-driven period-doubling bifurcations.BioSystems 22, 279–287.CrossRefGoogle Scholar
  59. Kot M. 1992. Discrete-time travelling waves: ecological examples.J. Math. Biol. 30, 413–436.MATHMathSciNetCrossRefGoogle Scholar
  60. Kot M. and W. Schaffer. 1986. Discrete-time growth-dispersal models.Math. Biosci. 80, 109–136.MATHMathSciNetCrossRefGoogle Scholar
  61. Kot, M., M. A. Lewis and P. van den Driessche. 1996. Dispersal data and the spread of invading organisms.Ecology, to appear.Google Scholar
  62. Krasnoselskii M. A. 1964.Positive Solutions of Operator Equations. Groningen, The Netherlands: Noordhoff.Google Scholar
  63. Krasnoselskii M. A. and P. P. Zabreiko. 1984.Geometrical Methods of Nonlinear Analysis. Berlin: Springer-Verlag.Google Scholar
  64. Krebs C. J. 1992. The role of dispersal in cyclic rodent populations. InAnimal Dispersal, N. C. Stenseth and W. Z. LidickerJr. (Eds), pp. 160–175. London: Chapman and Hall.Google Scholar
  65. Krebs C. J., B. L. Keller and R. H. Tamarin. 1969.Microtus population biology: demographic changes in fluctuating populations ofM. ochrogaster andM. pennsylvanicus in southern Indiana.Ecology 50, 587–607.CrossRefGoogle Scholar
  66. Krein M. G. and M. A. Rutman. 1950. Linear operators which leave a cone in Banach space invariant.Am. Math. Soc. Transl. 26, 3–128.MathSciNetGoogle Scholar
  67. Lamberson R. H., R. McKelvey, B. R. Noon and C. Voss. 1992. A dynamic analysis of northern spotted owl viability in a fragmented forest landscape.Conservation Biol. 6, 505–512.CrossRefGoogle Scholar
  68. Lefkovitch L. P. and L. Fahrig. 1985. Spatial characteristics of habitat patches and population survival.Ecological Modelling 30, 297–308.CrossRefGoogle Scholar
  69. Li T-Y. and J. A. Yorke. 1975. Period three implies chaos.Am. Math. Monthly 82, 985–992.MATHMathSciNetCrossRefGoogle Scholar
  70. Li T-Y., M. Misiurewicz, G. Pianigiani and J. A. Yorke. 1982. Odd chaos.Phys. Lett. 87A, 271–273.MathSciNetGoogle Scholar
  71. Lidicker W. Z.Jr. 1962. Emigration as a possible mechanism permitting the regulation of population density below the carrying capacity.Am. Naturalist 96, 29–34.CrossRefGoogle Scholar
  72. Lubina J. A. and S. A. Levin. 1988. The spread of a reinvading species: range expansion in the California sea otter.Am. Naturalist 131, 526–543.CrossRefGoogle Scholar
  73. Ludwig D. D. G. Aronson and H. F. Weinberger. 1979. Spatial patterning of the spruce budworm.J. Math. Biol. 8, 217–258.MATHMathSciNetGoogle Scholar
  74. Lui R. 1982a. A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data.SIAM J. Math. Anal. 13, 913–937MATHMathSciNetCrossRefGoogle Scholar
  75. Lui R. 1982b. A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support.SIAM J. Math. Anal. 13, 938–953.MATHMathSciNetCrossRefGoogle Scholar
  76. Lui R. 1983. Existence and stability of travelling wave solutions of a nonlinear integral operator.J. Math. Biol. 16, 199–220.MATHMathSciNetCrossRefGoogle Scholar
  77. Lui R. 1985. A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case.SIAM J. Math. Anal. 16, 1180–1206.MATHMathSciNetCrossRefGoogle Scholar
  78. Lui R. 1986. A nonlinear integral operator arising from a model in population genetics. IV. Clines.SIAM J. Math. Anal. 17, 152–168.MATHMathSciNetCrossRefGoogle Scholar
  79. Lui R. 1989a. Biological growth and spread modeled by systems of recursions. I. Mathematical theory.Math. Biosci. 93, 269–295.MATHMathSciNetCrossRefGoogle Scholar
  80. Lui R. 1989b. Biological growth and spread modeled by systems of recursions. II. Biological theory.Math. Biosci. 93, 297–312.MATHMathSciNetCrossRefGoogle Scholar
  81. Magnus W. and S. Winkler. 1979.Hill's Equation. New York: Dover.Google Scholar
  82. Maurer B. A. 1994.Geographical Population Analysis: Tools for the Analysis of Biodiversity. Oxford: Blackwell Scientific Publications.Google Scholar
  83. May R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos.Science 186, 645–647.Google Scholar
  84. May R. M. 1975. Biological populations obeying difference equations: stable points, stable cycles and chaos.J. Theor. Biol. 51, 511–524.CrossRefGoogle Scholar
  85. May R. M. 1976. Simple mathematical models with very complicated dynamics.Nature 261, 459–467.CrossRefGoogle Scholar
  86. Metzgar L. H. 1967. An experimental comparison of screech owl predations on resident and transient white-footed mice (Peromyscus leucopus).J. Mammalogy 48, 387–391.CrossRefGoogle Scholar
  87. Moore J. and R. Ali. 1984. Are dispersal and inbreeding avoidance related?.Animal Behaviour 32, 94–112.CrossRefGoogle Scholar
  88. Murray J. D. 1989.Mathematical Biology. Berlin: Springer-VerlagMATHGoogle Scholar
  89. Murray J. D., E. A. Stanley and D. L. Brown. 1986. On the spread of rabies among foxes.Proc. Roy. Soc. London Ser. B 229 111–150.CrossRefGoogle Scholar
  90. Namba T. 1980. Density-dependent dispersal and spatial distribution of a population.J. Theor. Biol. 86, 351–363.MathSciNetCrossRefGoogle Scholar
  91. Neubert M., M. Kot and M. A. Lewis. 1995. Dispersal and pattern formation in a discrete time predator-prey model.Theor. Pop. Biol. 48, 7–43.MATHCrossRefGoogle Scholar
  92. Newmark W. D. 1991. Tropical forest fragmentation and the local extinction of understory birds in the eastern Usambara mountains, Tanzania.Conservation Biol. 5, 67–78.CrossRefGoogle Scholar
  93. Nicholson A. J. 1954. An outline of the dynamics of animal populations.Austral. J. Zoology 2, 9–65.CrossRefGoogle Scholar
  94. Peitgen H.-O. and P. H. Richter. 1986The Beauty of Fractals: Images of Complex Dynamical Systems. Berlin: Springer.MATHGoogle Scholar
  95. Pulliam H. R. 1988. Sources, sinks, and population regulation.Am. Naturalist 132, 652–661.CrossRefGoogle Scholar
  96. Pulliam H. R. and B. J. Danielson. 1991. Sources, sinks and habitat selection: a landscape perspective on population dynamics.Am. Naturalist 137, S50-S66.CrossRefGoogle Scholar
  97. Ribble D. O. 1992. Dispersal in a monogamous rodent,Peromyscus califormicus.Ecology 73, 859–866.CrossRefGoogle Scholar
  98. Richter C. J. 1970. Aerial dispersal in relation to habitat in eight wolf spider specie (Pardosa, Araneae, Lycosidae).Oecologia 5, 200–214.CrossRefGoogle Scholar
  99. Ricker W. E. 1954. Stock and recruitment.J. Fisheries Research Board of Canada 11, 559–623.Google Scholar
  100. Roughgarden J. and Y. Iwasa. 1986. Dynamics of a metapopulation with space-limited subpopulations.Theor. Pop. Biol. 29, 235–261.MATHMathSciNetCrossRefGoogle Scholar
  101. Saunders D. A., R. J. Hobbs and C. R. Margules. 1991. Biological consequencs of ecosystem fragmentation: a review.Conservation Biol. 5, 18–32CrossRefGoogle Scholar
  102. Shields W. M. 1987. Dispersal and mating systems: investigating their causal connections. InMammalian Dispersal Patterns B. D. Chepko-Sade and Z. T. Halpin (Eds), pp. 3–24. Chicago: University of Chicago Press.Google Scholar
  103. Shigesada N. and K. Kawasaki. 1986. Traveling periodic waves in heterogeneous environments.Theor. Pop. Biol. 30, 143–160.MATHMathSciNetCrossRefGoogle Scholar
  104. Sievert P. R. and L. B. Keith. 1985. Survival of snowshoe hares at a geographic range boundary.J. Wildlife Management 49, 854–866Google Scholar
  105. Simberloff D. and L. G. Abele. 1982. Refuge design and island biogeographic theory: effects of fragmentation.Am. Naturalist 120, 41–50.CrossRefGoogle Scholar
  106. Skellam J. G. 1951. Random dispersal in theoretical populations.Biometrika 38, 196–218.MATHMathSciNetCrossRefGoogle Scholar
  107. Slatkin M. 1973. Gene flow and selection in a cline.Genetics 75, 733–756MathSciNetGoogle Scholar
  108. Slatkin M. 1975. Gene flow and selection in a two-locus system.Genetics 81, 787–802.Google Scholar
  109. Slatkin M. 1978. Spatial patterns in the distribution of polygenic characters.J. Theor. Biol. 70, 213–228.CrossRefGoogle Scholar
  110. Small R. J., J. C. Holzwart and D. H. Rusch 1993. Are ruffed grouse more vulnerable to mortality during dispersal?Ecology 74, 2020–2026.CrossRefGoogle Scholar
  111. Smith A. T. 1974. The distribution and dispersal of pikes: consequences of insular population structure.Ecology 55, 1112–1119.CrossRefGoogle Scholar
  112. Smith A. T. 1980. Temporal changes in insular populations of the pike (Ochotona princeps).Ecology 61, 8–13.CrossRefGoogle Scholar
  113. Stefan P. 1977. A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line.Commun. Math. Phys. 54, 237–248.MATHMathSciNetCrossRefGoogle Scholar
  114. Van Kirk, R. W. 1995. Integrodigerence models of biological growth and dispersal. Ph.D. thesis, University of Utah.Google Scholar
  115. Veit R. R. and M. A. Lewis. 1996. Dispersal, population growth and the Allee effect: dynamics of the house finch invasion of eastern North America.Ecology 148, 255–274.Google Scholar
  116. Waser P. 1985. Does competition drive dispersal?Ecology 66, 1170–1175.CrossRefGoogle Scholar
  117. Weinberger H. F. 1978. Asymptotic behavior of a model in population genetics. InNonlinear Partial Differential Equations and Applications. Lecture Notes in Mathematics, J. M. Chadam (Ed), Vol. 648, pp. 47–96. Berlin: Springer-Verlag.Google Scholar
  118. Weinberger H. F. 1982. Long-time behavior of a class of biological models.SIAM J. Math. Anal. 13 353–396.MATHMathSciNetCrossRefGoogle Scholar
  119. Wiens J. A. 1976. Population responses to patchy environments.Ann. Rev. Ecology and Systematics 7, 81–120.CrossRefGoogle Scholar
  120. Wilcox B. A. and D. D. Murphy. 1985. Conservation strategy: the effects of fragmentation on extinction.Am. Naturalist 125, 879–887.CrossRefGoogle Scholar
  121. Williams E. J. 1961. The distribution of larvae of randomly moving insects.Austral. J. Biol. Sci. 14 598–604.Google Scholar
  122. Wolff J. O., K. I. Lundy and R. Baccus. 1988. Dispersal, inbreeding avoidance and reproductive success in white-footed mice.Animal Behaviour 36, 456–465.Google Scholar

Copyright information

© Society for Mathematical Biology 1997

Authors and Affiliations

  • R. W. Van Kirk
    • 1
  • M. A. Lewis
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.The Henry's Fork FoundationAshton

Personalised recommendations