Bulletin of Mathematical Biology

, Volume 59, Issue 3, pp 551–567

Cannibalism in an age-structured predator-prey system

  • Frank Van den Bosch
  • Wilfried Gabriel
Article

Abstract

Recently, Kohlmeier and Ebenhöh showed that cannibalism can stabilize population cycles in a Lotka-Volterra type predator-prey model. Population cycles in their model are due to the interaction between logistic population growth of the prey and a hyperbolic functional response. In this paper, we consider a predator-prey system where cyclic population fluctuations are due to the age structure in the predator species. It is shown that cannibalism is also a stabilizing mechanism when population oscillations are due to this age structure. We conclude that in predator-prey systems, cannibalism by predators can stabilize both externally generated (consumer-resource) as well as internally generated (agestructure) fluctuations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cushing, J. M. 1991. A simple model of cannibalism.Math. Biosci. 107, 47–71.MATHMathSciNetCrossRefGoogle Scholar
  2. Cushing, J. M. 1992. A size-structured model for cannibalism.Theor. Pop. Biol. 42, 347–361.MATHCrossRefGoogle Scholar
  3. Desharnais, R. A. and L. Liu. 1987. Stable demographic limit cycles in laboratory populations ofTribolium Castaneum.J. Anim. Ecol. 56, 885–906.CrossRefGoogle Scholar
  4. Diekmann, O., R. M. Nisbet, W. S. C. Gurney and F. van den Bosch. 1986. Simple mathematical models for cannibalism: a critique and a new approach.Math. Biosci. 78, 21–46.MATHMathSciNetCrossRefGoogle Scholar
  5. Edelstein-Keshet, L. 1988.Mathematical Models in biology. New York: Random House.MATHGoogle Scholar
  6. Elgar, M. A. and B. J. Crespi (Eds). 1992Cannibalism: Ecology and Evolution among Diverse Taxa, Oxford: Oxford University Press.Google Scholar
  7. Fox, L. R. 1975. Cannibalism in natural populations.Ann. Rev. Ecol. Syst. 6, 87–106.CrossRefGoogle Scholar
  8. Gabriel, W. 1985. Overcoming food limitations by cannibalism: a model study on cyclopoids.Arch. Hydrobiol. Beiheft,21, 373–381.Google Scholar
  9. Gabriel, W. and F. van den Bosch. 1991. Consequences of intraspecific predation: A physiologically structured model approach. InAnalyse Dynamischer Systeme in Medizin Biologie un Ecology, D. P. F. Möller and O. Richter (Eds), Informatik Fachberichte Vol. 275, pp. 177–184. Berlin: Springer.Google Scholar
  10. Gurney, W. S. C., S. P. Blight and R. M. Nisbet. 1983. The systematic formulation of tractable single-species population models incorporating age structure.J. Anim. Ecol. 52, 479–495.CrossRefGoogle Scholar
  11. Gurney, W. S. C. and R. M. Nisbet. 1985. Fluctuation periodicity, generation separation and the expression of larval competition.Theor. Pop. Biol. 28, 150–180.MATHMathSciNetCrossRefGoogle Scholar
  12. Hastings, A. 1983. Age dependent predation is not a simple process. I. Continuous time models.Theor. Pop. Biol. 23, 347–362.MATHMathSciNetCrossRefGoogle Scholar
  13. Hastings, A. 1987. Cycles in cannibalistic egg-larval interactions.J. Math. Biol. 24, 651–666.MATHMathSciNetGoogle Scholar
  14. Kohlmeier, C. and W. W. Ebenhöh. 1995. The stabilizing role of cannibalism in a predator-prey system.Bull. Math. Biol. 57, 401–411.MATHGoogle Scholar
  15. Maas, P., W. S. C. Gurney and R. M. Nisbet. 1984. SOLVER—an adaptable program template for initial value problem solving. Glasgow: University of Strathclyde, Applied Physics Industrial Consultants.Google Scholar
  16. Polis, G. A. 1981. The evolution and dynamics of intraspecific predation.Ann. Rev. Ecol. Syst. 12, 225–251.CrossRefGoogle Scholar
  17. van den Bosch, F., A. M. de Roos and W. Gabriel. 1988. Cannibalism as a lifeboat mechanism.J. Math. Biol. 26, 619–633.MATHMathSciNetGoogle Scholar
  18. van den Bosch, F. and W. Gabriel. 1991. The impact of cannibalism on the population dynamics of cyclopoid copepods.Verh. Internat. Verein. Limnol. 24, 2848–2850.Google Scholar
  19. van den Bosch, F. and B. Santer. 1993. Cannibalism inCyclops abyssorum.OIKOS 67, 19–28.Google Scholar

Copyright information

© Society for Mathematical Biology 1997

Authors and Affiliations

  • Frank Van den Bosch
    • 1
  • Wilfried Gabriel
    • 2
  1. 1.Department of MathematicsAgricultural University of WageningenWageningenThe Netherlands
  2. 2.Department of EcologyZoological Institute of the Ludwig-Maximilians-University of MunichMünchenGermany

Personalised recommendations