Bulletin of Mathematical Biology

, Volume 51, Issue 1, pp 133–166 | Cite as

Weak hierarchies associated with similarity measures—An additive clustering technique

  • H. -J. Bandelt
  • A. W. M. Dress


A new and apparently rather useful and natural concept in cluster analysis is studied: given a similarity measure on a set of objects, a sub-set is regarded as a cluster if any two objectsa, b inside this sub-set have greater similarity than any third object outside has to at least one ofa, b. These clusters then form a closure system which can be described as a hypergraph without triangles. Conversely, given such a system, one may attach some weight to each cluster and then compose a similarity measure additively, by letting the similarity of a pair be the sum of weights of the clusters containing that particular pair. The original clusters can be reconstructed from the obtained similarity measure. This clustering model is thus located between the general additive clustering model of Shepard and Arabie (1979) and the standard hierarchical model. Potential applications include fitting dendrograms with few additional nonnested clusters and simultaneous representation of some families of multiple dendrograms (in particular, two-dendrogram solutions), as well as assisting the search for phylogenetic relationships by proposing a somewhat larger system of possibly relevant “family groups”, from which an appropriate choice (based on additional insight or individual preferences) remains to be made.


Weight Function Similarity Measure Additive Cluster Special Cycle Weak Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, L. A., F. A. Bisby and D. J. Rogers. 1985.Taxonomic Analysis in Biology. New York: Columbia University Press.Google Scholar
  2. Anstee, R. P. 1980. “Properties of (0, 1)-Matrices with no Triangles”.J. Combinatorial Theor. A29, 186–198.zbMATHMathSciNetCrossRefGoogle Scholar
  3. Arabie, P. and J. D. Carroll. 1980. “MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model”.Psychometrika 45, 211–235.zbMATHCrossRefGoogle Scholar
  4. ——, W. DeSarbo and J. Wind. 1981. “Overlapping Clustering: A New Method for Product Positioning”.J. Marketing Res,18, 310–317.CrossRefGoogle Scholar
  5. Bandelt, H.-J. and A. Dress. 1986. “Reconstructing the Shape of a Tree from Observed Dissimilarity Data”.Adv. Appl. Math. 7, 309–343.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Arabie, P. and J. D. Carroll. (a). “A Canonical Decomposition Theory for Metrics on a Finite Set”, in preparation.Google Scholar
  7. Barthélemy, J. P. and N. X. Luong. 1987. “Sur la Topologie d'un Arbre Phylogénétique: Aspects Théoriques, Algorithmes et Applications à l'Analyse de Données Textuelles”,Math. Sci. Hum. 100, 57–80.zbMATHGoogle Scholar
  8. Birkhoff, G. 1967.Lattice Theory (3rd edn). Providence: American Mathematical Society.zbMATHGoogle Scholar
  9. Bock, H. H. 1974.Automatische Klassifikation. Göttingen: Vandenhoeck & Ruprecht.zbMATHGoogle Scholar
  10. Brouwer, A. E. and A. Kolen. 1980. “A Super-Balanced Hypergraph has a Nest Point”. Report ZW 146/80. Amsterdam: Mathematisch Centrum.zbMATHGoogle Scholar
  11. Butler, K. A. and J. E. Corter. 1986. “Use of Psychometric Tools for Knowledge Acquisition: A Case Study.” InArtificial Intelligence and Statistics, W. A. Gale (Ed.), pp. 295–319. Reading, MA: Addison-Wesley.Google Scholar
  12. Carroll, J. D. 1976. “Spatial, Non-Spatial and Hybrid Models for Scaling”.Psychometrika,41, 439–463.zbMATHCrossRefGoogle Scholar
  13. — and S. Pruzansky. 1980. “Discrete and Hybrid Scaling Models”. InSimilarity and Choice, E. D. Lantermann and H. Feger (Eds), pp. 108–139. Switzerland: Hans Huber.Google Scholar
  14. — and —. 1986. “Discrete and Hybrid Models for Proximity Data”. InClassification as a Tool of Research, W. Gaul and M. Schader (Eds), pp. 47–59. Amsterdam: Elsevier.Google Scholar
  15. Corter, J. E. 1982. “ADDTREE/P: A PASCAL Program for Fitting Additive Trees based on Sattath and Tversky's ADDTREE Algorithm”.Behavior Research Methods and Instrumentation 14, 353–354.Google Scholar
  16. — and A. Tversky. 1986. “Extended Similarity Trees”,Psychometrika 51, 429–451.zbMATHCrossRefGoogle Scholar
  17. Giles, R. 1978. “A Balanced Hypergraph Defined by Certain Subtrees of a Tree”.Ars Combinatoria 6, 179–183.zbMATHMathSciNetGoogle Scholar
  18. Golumbic, M. C. and R. E. Jamison. 1985. “The Intersection Graphs of Paths in a Tree”.J. Combinatorial Theor. B38, 8–22.zbMATHMathSciNetCrossRefGoogle Scholar
  19. Gordon, A. D. 1987. “A Review of Hierarchical Classification”.J. R. Statist. Soc. A150, 119–137.zbMATHCrossRefGoogle Scholar
  20. Mamison-Waldner, R. E. 1981. “Partition Numbers for Trees and Ordered Sets”.Pacif. J. Math. 96, 115–140.Google Scholar
  21. —. 1982. “A Perspective on Abstract Convexity: Classifying Alignments by Varieties”. InConvexity and Related Combinatorial Geometry, D. C. Kay and M. Breen (Eds), pp. 113–150. New York: Dekker.Google Scholar
  22. Kolen, A. 1983. “Solving Covering Problems and the Uncapacitated Plant Location Problem on Trees”,Eur. J. Oper. Res. 12, 266–278.zbMATHMathSciNetCrossRefGoogle Scholar
  23. Lassak, M. 1983. “The Rank of Product Closure Systems”,Arch. Math. 40, 186–191.zbMATHMathSciNetCrossRefGoogle Scholar
  24. Leffers, H., J. Kjems, L. Østergaard, N. Larsen and R. A. Garrett. 1987. “Evolutionary Relationships Amongst Archaebacteria: A Comparative Study of 23S Ribosomal RNAs of a Sulphur-Dependent Extreme Thermophile, an Extreme Halophile and a Thermophilic Methanogen”.J. Molec. Biol. 195, 43–61.CrossRefGoogle Scholar
  25. Lehel, J. 1985. “A Characterization of Totally Balanced Hypergraphs”.Discrete Math. 57, 59–65.zbMATHMathSciNetCrossRefGoogle Scholar
  26. Margush, T. and F. R. McMorris. 1981. “Consensusn-trees”.Bull. Math. Biol. 43, 239–244.zbMATHMathSciNetCrossRefGoogle Scholar
  27. McMorris, F. R. 1987. Proceedings of the 1st Conference of the IFCS. Aachen.Google Scholar
  28. Mirkin, B. G. 1987. “Additive Clustering and Qualitative Factor Analysis Methods for Similarity Matrices”.J. Classification 4, 7–31.zbMATHMathSciNetCrossRefGoogle Scholar
  29. Nei, M. 1987.Molecular Evolutionary Genetics. New York: Columbia University Press.Google Scholar
  30. Punj, G. and D. W. Stewart. 1983. “Cluster Analysis in Marketing Research: Review and Suggestions for Application”.J. Marketing Res. 20, 134–148.CrossRefGoogle Scholar
  31. Ryser, H. J. 1972. “A Fundamental Matrix Equation for Finite Sets”.Proc. Am. Math. Soc. 34, 332–336.zbMATHMathSciNetCrossRefGoogle Scholar
  32. — 1973. “Intersection Properties of Finite Sets”.J. Combinatorial Theor. A14, 79–92.zbMATHMathSciNetCrossRefGoogle Scholar
  33. Sattath, S. and A. Tversky. 1977. “Additive Similarity Trees”.Psychometrika,42, 319–345.CrossRefGoogle Scholar
  34. — and —. 1987. “On the Relation Between Common and Distinctive Feature Models”.Psychol. Rev. 94, 16–22.CrossRefGoogle Scholar
  35. Shepard, R. N. and P. Arabie. 1979. “Additive Clustering: Representation of Similarities as Combinations of Discrete Overlapping Properties”.Psychol. Rev. 86, 87–123.CrossRefGoogle Scholar
  36. Sibley, C. G. and J. E. Ahlquist. 1984. “The Phylogeny of the Hominoid Primates as Indicated by DNA-DNA Hybridization”.J. Molec. Evol. 20, 2–15.CrossRefGoogle Scholar
  37. Sneath, P. H. A. and R. R. Sokal. 1973.Numerical Taxonomy. San Francisco: Freeman.zbMATHGoogle Scholar
  38. Tversky, A. 1977. “Features of Similarity”.Psychol. Rev. 84, 327–352.CrossRefGoogle Scholar
  39. van de Vel, M. 1987. “Abstract, Topological, and Uniform Convex Structures I”. Rapport nr. 325, Fac. W & I, Vrije Universiteit, Amsterdam.Google Scholar
  40. Wille, R. 1988. “Lattices in Data Analysis: How to Draw Them with a Computer”. InAlgorithms and Order, I. Rival (Ed.). Dordrecht: Reidel.Google Scholar

Copyright information

© Society for Mathematical Biology 1989

Authors and Affiliations

  • H. -J. Bandelt
    • 1
  • A. W. M. Dress
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1F.R.G.

Personalised recommendations